
In-Memory Big Data Management
and Processing: A Survey

Hao Zhang, Gang Chen,Member, IEEE, Beng Chin Ooi, Fellow, IEEE,

Kian-Lee Tan,Member, IEEE, and Meihui Zhang,Member, IEEE

Abstract—Growing main memory capacity has fueled the development of in-memory big data management and processing. By

eliminating disk I/O bottleneck, it is now possible to support interactive data analytics. However, in-memory systems are much

more sensitive to other sources of overhead that do not matter in traditional I/O-bounded disk-based systems. Some issues such as

fault-tolerance and consistency are also more challenging to handle in in-memory environment. We are witnessing a revolution in the

design of database systems that exploits main memory as its data storage layer. Many of these researches have focused along several

dimensions: modern CPU and memory hierarchy utilization, time/space efficiency, parallelism, and concurrency control. In this survey,

we aim to provide a thorough review of a wide range of in-memory data management and processing proposals and systems, including

both data storage systems and data processing frameworks. We also give a comprehensive presentation of important technology in

memory management, and some key factors that need to be considered in order to achieve efficient in-memory data management

and processing.

Index Terms—Primary memory, DRAM, relational databases, distributed databases, query processing

Ç

1 INTRODUCTION

THE explosion of Big Data has prompted much research
to develop systems to support ultra-low latency service

and real-time data analytics. Existing disk-based systems
can no longer offer timely response due to the high access
latency to hard disks. The unacceptable performance was
initially encountered by Internet companies such as Ama-
zon, Google, Facebook and Twitter, but is now also becom-
ing an obstacle for other companies/organizations which
desire to provide a meaningful real-time service (e.g., real-
time bidding, advertising, social gaming). For instance,
trading companies need to detect a sudden change in the
trading prices and react instantly (in several milliseconds),
which is impossible to achieve using traditional disk-based
processing/storage systems. To meet the strict real-time
requirements for analyzing mass amounts of data and ser-
vicing requests within milliseconds, an in-memory system/
database that keeps the data in the random access memory
(RAM) all the time is necessary.

Jim Gray’s insight that “Memory is the new disk, disk is
the new tape” is becoming true today [1]—we are witness-
ing a trend where memory will eventually replace disk and
the role of disks must inevitably become more archival. In

the last decade, multi-core processors and the availability of
large amounts of main memory at plummeting cost are cre-
ating new breakthroughs, making it viable to build in-mem-
ory systems where a significant part, if not the entirety, of
the database fits in memory. For example, memory storage
capacity and bandwidth have been doubling roughly every
three years, while its price has been dropping by a factor of
10 every five years. Similarly, there have been significant
advances in non-volatile memory (NVM) such as SSD and
the impending launch of various NVMs such as phase
change memory (PCM). The number of I/O operations per
second in such devices is far greater than hard disks. Mod-
ern high-end servers usually have multiple sockets, each of
which can have tens or hundreds of gigabytes of DRAM,
and tens of cores, and in total, a server may have several
terabytes of DRAM and hundreds of cores. Moreover, in a
distributed environment, it is possible to aggregate the
memories from a large number of server nodes to the extent
that the aggregated memory is able to keep all the data for a
variety of large-scale applications (e.g., Facebook [2]).

Database systems have been evolving over the last
few decades, mainly driven by advances in hardware,
availability of a large amount of data, collection of data at
an unprecedented rate, emerging applications and so on.
The landscape of data management systems is increasingly
fragmented based on application domains (i.e., applications
relying on relational data, graph-based data, stream data).
Fig. 1 shows state-of-the-art commercial and academic sys-
tems for disk-based and in-memory operations. In this sur-
vey, we focus on in-memory systems; readers are referred
to [3] for a survey on disk-based systems.

In business operations, speed is not an option, but a
must. Hence every avenue is exploited to further improve
performance, including reducing dependency on the hard
disk, adding more memory to make more data resident in

� H. Zhang, B.C. Ooi, and K.-L. Tan are with the School of Computing,
National University of Singapore, Singapore 117417.
E-mail: {zhangh, ooibc, tankl}@comp.nus.edu.sg.

� G. Chen is with the College of Computer Science, Zhejiang University,
Hangzhou 310027, China. E-mail: cg@cs.zju.edu.cn.

� M. Zhang is with the Information Systems Technology and Design Pillar,
Singapore University of Technology and Design, Singapore 487372.
E-mail: meihui_zhang@sutd.edu.sg.

Manuscript received 16 Jan. 2015; revised 22 Apr. 2015; accepted 25 Apr.
2015. Date of publication 28 Apr. 2015; date of current version 1 June 2015.
Recommended for acceptance by J. Pei.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2015.2427795

1920 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

1041-4347 � 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

the memory, and even deploying an in-memory system
where all data can be kept in memory. In-memory database
systems have been studied in the past, as early as the 1980s
[69], [70], [71], [72], [73]. However, recent advances in hard-
ware technology have invalidated many of the earlier works
and re-generated interests in hosting the whole database in
memory in order to provide faster accesses and real-time
analytics [35], [36], [55], [74], [75], [76].Most commercial data-
base vendors have recently introduced in-memory database
processing to support large-scale applications completely
in memory [37], [38], [40], [77]. Efficient in-memory data
management is a necessity for various applications [78], [79].
Nevertheless, in-memory data management is still at its
infancy, and is likely to evolve over the next few years.

In general, as summarized in Table 1, research in in-
memory data management and processing focus on the fol-
lowing aspects for efficiency or enforcing ACID properties:

� Indexes. Although in-memory data access is
extremely fast compared to disk access, an efficient
index is still required for supporting point queries in
order to avoid memory-intensive scan. Indexes
designed for in-memory databases are quite different
from traditional indexes designed for disk-based
databases such as the Bþ-tree, because traditional
indexes mainly care about the I/O efficiency instead
of memory and cache utilization. Hash-based indexes
are commonly used in key-value stores, e.g., Memc-
ached [61], Redis [66], RAMCloud [75], and can be
further optimized for better cache utilization by

reducing pointer chasing [63]. However hash-based
indexes do not support range queries, which are cru-
cial for data analytics and thus, tree-based indexes
have also been proposed, such as T-Tree [80], Cache
Sensitive Search Trees (CSS-Trees) [81], Cache Sensi-
tive Bþ-Trees (CSBþ-Trees) [82], D-Tree [83], BD-Tree
[84], Fast Architecture Sensitive Tree (FAST) [85],
Bw-tree [86] and Adaptive Radix Tree (ART) [87],
some of which also consider pointer reduction.

� Data layouts. In-memory data layouts have a signifi-
cant impact on the memory usage and cache utiliza-
tion. Columnar layout of relational table facilitates
scan-like queries/analytics as it can achieve good
cache locality [41], [88], and can achieve better data
compression [89], but is not optimal for OLTP queries
that need to operate on the row level [74], [90]. It is
also possible to have a hybrid of row and column lay-
outs, such as PAX which organizes data by columns
only within a page [91], and SAP HANA with multi-
layer stores consisting of several delta row/column
stores and a main column store, which are merged
periodically [74]. In addition, there are also proposals
on handling the memory fragmentation problem,
such as the slab-based allocator in Memcached [61],
and log-structured data organization with periodical
cleaning in RAMCloud [75], and better utilization of
some hardware features (e.g., bit-level parallelism,
SIMD), such as BitWeaving [92] and ByteSlice [93].

� Parallelism. In general, there are three levels of
parallelism, i.e., data-level parallelism (e.g., bit-level

Fig. 1. The (Partial) landscape of disk-based and in-memory data management systems.

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1921

parallelism, SIMD),1 shared-memory scale-up paral-
lelism (thread/process),2 and shared-nothing scale-
out parallelism (distributed computation). All three
levels of parallelism can be exploited at the same
time, as shown in Fig. 2. The bit-parallel algorithms
fully unleash the intra-cycle parallelism of modern
CPUs, by packing multiple data values into one CPU
word, which can be processed in one single cycle
[92], [94]. Intra-cycle parallelism performance can be
proportional to the packing ratio, since it does not
require any concurrency control (CC) protocol.
SIMD instructions can improve vector-style compu-
tations greatly, which are extensively used in high-
performance computing, and also in the database
systems [95], [96], [97]. Scale-up parallelism can take
advantage of the multi-core architecture of super-
computers or even commodity computers [36], [98],
while scale-out parallelism is highly utilized in
cloud/distributed computing [2], [55], [99]. Both
scale-up and scale-out parallelisms require a good
data partitioning strategy in order to achieve load
balancing and minimize cross-partition coordination
[100], [139], [140], [141].

� Concurrency control/transaction management. Con-
currency control/transaction management becomes
an extremely important performance issue in in-
memory data management with the many-core sys-
tems. Heavy-weightmechanisms based on lock/sem-
aphore greatly degrade the performance, due to its
blocking-style scheme and the overhead caused by
centralized lock manager and deadlock detection
[142], [143]. Lightweight Intent Lock (LIL) [105] was
proposed to maintain a set of lightweight counters in
a global lock table instead of lock queues for intent
locks. Very Lightweight Locking (VLL) [106] further
simplifies the data structure by compressing all the
lock states of one record into a pair of integers for par-
titioned databases. Another class of concurrency con-
trol is based on timestamp, where a predefined order

is used to guarantee transactions’ serializability [144],
such as optimistic concurrency control (OCC) [39],
[107] and multi-version concurrency control (MVCC)
[108], [109]. Furthermore, H-Store [36], [101], seeks to
eliminate concurrency control in single-partition
transactions by partitioning the database beforehand
based on a priori workload and providing one thread
for each partition. HyPer [35] isolates OLTP and
OLAP by fork-ing a child process (via fork() system
call) for OLAP jobs based on the hardware-assisted
virtual snapshot, which will never be modified.
DGCC [110] is proposed to reduce the overhead of
concurrency control by separating concurrency con-
trol from execution based on a dependency graph.
Hekaton [104], [107] utilizes optimistic MVCC and
lock-free data structures to achieve high concurrency
efficiently. Besides, hardware transactional memory
(HTM) [102], [103] is being increasingly exploited in
concurrency control for OLTP.

� Query processing. Query processing is going
through an evolution in in-memory databases. While
the traditional Iterator-/Volcano-style model [145]
facilitates easy combination of arbitrary operators,
it generates a huge number of function calls (e.g.,
next()) which results in evicting the register contents.
The poor code locality and frequent instruction
miss-predictions further add to the overhead [112],
[113]. Coarse-grained stored procedures (e.g., trans-
action-level) can be used to alleviate the problem
[111], and dynamic compiling (Just-in-Time) is
another approach to achieve better code and data
locality [112], [113]. Performance gain can also be
achieved by optimizing specific query operation

TABLE 1
Optimization Aspects on In-Memory Data Management and Processing

Fig. 2. Three levels of parallelism.

1. Here data-level parallelism includes both bit-level parallelism
achieved by data packing, and word-level parallelism achieved by
SIMD.

2. Accelerators such as GPGPU and Xeon Phi are also considered as
shared-memory scale-up parallelism.

1922 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

such as join [98], [114], [115], [116], [117], [118], [119],
[120], [121], [122], and sort [95], [123], [124].

� Fault tolerance. DRAM is volatile, and fault-toler-
ance mechanisms are thus crucial to guarantee
the data durability to avoid data loss and to ensure
transactional consistency when there is a failure
(e.g., power, software or hardware failure). Tradi-
tional write-ahead logging (WAL) is also the de facto
approach used in in-memory database systems [35],
[36], [37]. But the data volatility of the in-memory
storage makes it unnecessary to apply any persistent
undo logging [37], [131] or completely disables it in
some scenarios [111]. To eliminate the potential I/O
bottleneck caused by logging, group commit and log
coalescing [37], [127], and remote logging [2], [40]
are adopted to optimize the logging efficiency. New
hardware technologies such as SSD and PCM are uti-
lized to increase the I/O performance [128], [129],
[130]. Recent studies proposed to use command log-
ging [131], which logs only operations instead of the
updated data, which is used in traditional ARIES
logging [146]. [132] studies how to alternate between
these two strategies adaptively. To speed up the
recovery process, a consistent snapshot has to be
checkpointed periodically [37], [147], and replicas
should be dispersed in anticipation of correlated fail-
ures [125]. High availability is usually achieved by
maintaining multiple replicas and stand-by servers
[37], [148], [149], [150], or relying on fast recovery
upon failure [49], [126]. Data can be further back-
uped onto a more stable storage such as GPFS [151],
HDFS [27] and NAS [152] to further secure the data.

� Data overflow. In spite of significant increase in
memory size and sharp drop in its price, it still can-
not keep pace with the rapid growth of data in the
Big Data era, which makes it essential to deal with
data overflow where the size of the data exceeds the
size of main memory. With the advancement of
hardware, hybrid systems which incorporate non-
volatile memories (NVMs) (e.g., SCM, PCM, SSD,
Flash memory) [30], [31], [32], [118], [127], [153],
[154], [155], [156] become a natural solution for
achieving the speed. Alternatively, as in the tradi-
tional database systems, effective eviction mecha-
nisms could be adopted to replace the in-memory
data when the main memory is not sufficient. The
authors of [133], [134], [157] propose to move cold
data to disks, and [136] re-organizes the data in
memory and relies on OS to do the paging, while
[137] introduces pointer swizzling in database buffer
pool management to alleviate the overhead caused
by traditional databases in order to compete with
the completely re-designed in-memory databases.
UVMM [138] taps onto a hybrid of hardware-
assisted and semantics-aware access tracking, and
non-blocking kernel I/O scheduler, to facilitate
efficient memory management. Data compression
has also been used to alleviate the memory usage
pressure [74], [89], [135].

The focus of the survey is on large-scale in-memory data
management and processing strategies, which can be

broadly grouped into two categories, i.e., in-memory data
storage systems and in-memory data processing systems.
Accordingly, the remaining sections are organized as fol-
lows. Section 2 presents some background on in-memory
data management. We elaborate in-memory data storage
systems, including relational databases and NoSQL data-
bases in Section 3, and in-memory data processing systems,
including in-memory batch processing and real-time stream
processing in Section 4. As a summary, we present a qualita-
tive comparison of the in-memory data management sys-
tems covered in this survey in Section 5. Finally, we discuss
some research opportunities in Section 6, and conclude in
Section 7.

2 CORE TECHNOLOGIES FOR IN-MEMORY

SYSTEMS

In this section, we shall introduce some concepts and
techniques that are important for efficient in-memory
data management, including memory hierarchy, non-uni-
form memory access (NUMA), transactional memory,
and non-volatile random access memory (NVRAM).
These are the basics on which the performance of in-
memory data management systems heavily rely.

2.1 Memory Hierarchy

The memory hierarchy is defined in terms of access latency
and the logical distance to the CPU. In general, it consists of
registers, caches (typically containing L1 cache, L2 cache
and L3 cache), main memory (i.e., RAM) and disks (e.g.,
hard disk, flash memory, SSD) from the highest perfor-
mance to the lowest. Fig. 3 depicts the memory hierarchy,
and respective component’s capacity and access latency
[158], [159], [160], [161], [162], [163], [164], [165], [166]. It
shows that data access to the higher layers is much faster
than to the lower layers, and each of these layers will be
introduced in this section.

In modern architectures, data cannot be processed by CPU
unless it is put in the registers. Thus, data that is about to be
processed has to be transmitted through each of the memory
layers until it reaches the registers. Consequently, each upper
layer serves as a cache for the underlying lower layer to
reduce the latency for repetitive data accesses. The perfor-
mance of a data-intensive program highly depends on the

Fig. 3. Memory hierarchy.

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1923

utilization of the memory hierarchy. How to achieve both
good spatial and temporal locality is usually whatmatters the
most in the efficiency optimization. In particular, spatial local-
ity assumes that the adjacent data ismore likely to be accessed
together, whereas temporal locality refers to the observation
that it is likely that an item will be accessed again in the near
future. We will introduce some important efficiency-related
properties of differentmemory layers respectively.

2.1.1 Register

A processor register is a small amount of storage within a
CPU, on which machine instructions can manipulate
directly. In a normal instruction, data is first loaded from
the lower memory layers into registers where it is used for
arithmetic or test operation, and the result is put back into
another register, which is then often stored back into main
memory, either by the same instruction or a subsequent
one. The length of a register is usually equal to the word
length of a CPU, but there also exist double-word, and even
wider registers (e.g., 256 bits wide YMMX registers in Intel
Sandy Bridge CPU micro architecture), which can be used
for single instruction multiple data (SIMD) operations.
While the number of registers depends on the architecture,
the total capacity of registers is much smaller than that of
the lower layers such as cache or memory. However, access-
ing data from registers is very much faster.

2.1.2 Cache

Registers play the role as the storage containers that CPU
uses to carry out instructions, while caches act as the bridge
between the registers and main memory due to the high
transmission delay between the registers and main memory.
Cache is made of high-speed static RAM (SRAM) instead of
slower and cheaper dynamic RAM (DRAM) that usually
forms the main memory. In general, there are three levels of
caches, i.e., L1 cache, L2 cache and L3 cache (also called last
level cache—LLC), with increasing latency and capacity. L1
cache is further divided into data cache (i.e., L1-dcache) and
instruction cache (i.e., L1-icache) to avoid any interference
between data access and instruction access. We call it a
cache hit if the requested data is in the cache; otherwise it is
called a cache miss.

Cache is typically subdivided into fixed-size logical
cache lines, which are the atomic units for transmitting data
between different levels of caches and between the last level
cache and main memory. In modern architectures, a cache
line is usually 64 bytes long. By filling the caches per cache
line, spatial locality can be exploited to improve perfor-
mance. The mapping between the main memory and the
cache is determined by several strategies, i.e., direct map-
ping, N-way set associative, and fully associative. With
direct mapping, each entry (a cache line) in the memory can
only be put in one place in the cache, which makes address-
ing faster. Under fully associative strategy, each entry can
be put in any place, which offers fewer cache misses. The
N-way associative strategy is a compromise between direct
mapping and fully associative—it allows each entry in the
memory to be in any of N places in the cache, which is
called a cache set. N-way associative is often used in prac-
tice, and the mapping is deterministic in terms of cache sets.

In addition, most architectures usually adopt a least-
recently-used (LRU) replacement strategy to evict a cache
line when there is not enough room. Such a scheme essen-
tially utilizes temporal locality for enhancing performance.
As shown in Fig. 3, the latency to access cache is much
shorter than the latency to access main memory. In order
to gain good CPU performance, we have to guarantee
high cache hit rate so that high-latency memory accesses
are reduced. In designing an in-memory management sys-
tem, it is important to exploit the properties of spatial and
temporal locality of caches. For examples, it would be
faster to access memory sequentially than randomly, and
it would also be better to keep a frequently-accessed object
resident in the cache. The advantage of sequential mem-
ory access is reinforced by the prefetching strategies of
modern CPUs.

2.1.3 Main Memory and Disks

Main memory is also called internal memory, which can be
directly addressed and possibly accessed by the CPU, in
contrast to external devices such as disks. Main memory is
usually made of volatile DRAM, which incurs equivalent
latency for random accesses without the effect of caches, but
will lose data when power is turned off. Recently, DRAM
becomes inexpensive and large enough to make an in-mem-
ory database viable.

Even though memory becomes the new disk [1], the vola-
tility of DRAM makes it a common case that disks3 are still
needed to backup data. Data transmission between main
memory and disks is conducted in units of pages, which
makes use of data spatial locality on the one hand and mini-
mizes the performance degradation caused by the high-
latency of disk seek on the other hand. A page is usually a
multiple of disk sectors4 which is the minimum transmis-
sion unit for hard disk. In modern architectures, OS usually
keeps a buffer which is part of the main memory to make
the communication between the memory and disk faster.5

The buffer is mainly used to bridge the performance gap
between the CPU and the disk. It increases the disk I/O per-
formance by buffering the writes to eliminate the costly disk
seek time for every write operation, and buffering the reads
for fast answer to subsequent reads to the same data. In a
sense, the buffer is to the disk as the cache is to the memory.
And it also exposes both spatial and temporal locality,
which is an important factor in handling the disk I/O
efficiently.

2.2 Memory Hierarchy Utilization

This section reviews related works from three perspective—
register-conscious optimization, cache-conscious optimiza-
tion and disk I/O optimization.

2.2.1 Register-Conscious Optimization

Register-related optimization usually matters in compiler
and assembly language programming, which requires

3. Here we refer to hard disks.
4. A page in the modern file system is usually 4 KB. Each disk sector

of hard disks is traditionally 512 bytes.
5. The kernel buffer is also used to buffer data from other block I/O

devices that transmit data in fixed-size blocks.

1924 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

utilizing the limited number of registers efficiently. There
have been some criticisms on the traditional iterator-style
query processing mechanisms for in-memory databases
recently as it usually results in poor code and data locality
[36], [112], [167]. HyPer uses low level virtual machine
(LLVM) compiler framework [167] to translate a query into
machine code dynamically, which achieves good code and
data locality by avoiding recursive function calls as much as
possible and trying to keep the data in the registers as long
as possible [112].

SIMD is available in superscalar processors, which
exploits data-level parallelism with the help of wide regis-
ters (e.g., 256 bits). SIMD can improve the performance sig-
nificantly especially for vector-style computation, which is
very common in Big Data analytics jobs [95], [96], [97],
[112], [168].

2.2.2 Cache-Conscious Optimization

Cache utilization is becoming increasingly important in
modern architectures. Several workload characterization
studies provide detailed analysis of the time breakdown in
the execution of DBMSs on a modern processor, and report
that DBMSs suffer from high memory-related processor
stalls when running on modern architectures. This is caused
by a huge amount of data cache misses [169], which
account for 50-70 percent for OLTP workloads [91], [170] to
90 percent for DSS workloads [91], [171], of the total
memory-related stall. In a distributed database, instruction
cache misses are another main source of performance degra-
dation due to a large number of TCP network I/Os [172].

To utilize the cache more efficiently, some works focus
on re-organizing the data layout by grouping together all
values of each attribute in an N-ary Storage Model (NSM)
page [91] or using a Decomposition Storage Model (DSM)
[173] or completely organizing the records in a column store
[41], [90], [174], [175]. This kind of optimization favors
OLAP workload which typically only needs a few columns,
but has a negative impact on intra-tuple cache locality [176].
There are also other techniques to optimize cache utilization
for the primary data structure, such as compression [177]
and coloring [178].

In addition, for memory-resident data structures, various
cache-conscious indexes have been proposed such as Cache
Sensitive Search Trees [81], Cache Sensitive Bþ-Trees [82],
Fast Architecture Sensitive Trees [85], and Adaptive Radix
Trees [87]. Cache-conscious algorithms have also been pro-
posed for basic operations such as sorting (e.g., burst sort)
[179] and joining [98], [114].

In summary, to optimize cache utilization, the following
important factors should be taken into consideration:

� Cache line length. This characteristic exposes spatial
locality, meaning that it would be more efficient to
access adjacent data.

� Cache size. It would also be more efficient to keep
frequently-used data within at least L3 cache size.

� Cache replacement policy. One of the most popular
replacement policies is LRU, which replaces the
least recently used cache line upon a cache miss. The
temporal locality should be exploited in order to get
high performance.

2.3 Non-Uniform Memory Access

Non-uniform memory access is an architecture of the main
memory subsystem where the latency of a memory opera-
tion depends on the relative location of the processor that
is performing memory operations. Broadly, each processor
in a NUMA system has a local memory that can be accessed
with minimal latency, but can also access at least one
remote memory with longer latency, which is illustrated
in Fig. 4.

The main reason for employing NUMA architecture is
to improve the main memory bandwidth and total mem-
ory size that can be deployed in a server node. NUMA
allows the clustering of several memory controllers into a
single server node, creating several memory domains.
Although NUMA systems were deployed as early as
1980s in specialized systems [185], since 2008 all Intel and
AMD processors incorporate one memory controller.
Thus, most contemporary multi-processor systems are
NUMA; therefore, NUMA-awareness is becoming a main-
stream challenge.

In the context of data management systems, current
research directions on NUMA-awareness can be broadly
classified into three categories:

� partitioning the data such that memory accesses to
remote NUMA domains are minimized [115], [186],
[187], [188], [189];

� managing NUMA effects on latency-sensitive work-
loads such as OLTP transactions [190], [191];

� efficient data shuffling across NUMA domains [192].

2.3.1 Data Partitioning

Partitioning the working set of a database has long been
used to minimize data transfers across different data
domains, both within a compute node and across compute
nodes. Bubba [186] is an example of an earlier parallel
database system that uses a shared-nothing architecture to
scale to hundreds of compute nodes. It partitions the data
using a hash- or range-based approach and always per-
forms the analytics operations only in the nodes that
contain the relevant partitions. Gamma [187] is another
example that was designed to operate on a complex archi-
tecture with an Intel iPSC/2 hypercube with 32 processors
and 32 disk drives. Like Bubba, Gamma partitions the
data across multiple disk drives and uses a hash-based
approach to implement join and aggregate operations on
top of the partitioned data. The partitioned data and execu-
tion provide the partitioned parallelism [193]. With NUMA
systems becoming mainstream, many research efforts have
started to address NUMA issues explicitly, rather than just
relying on data partitioning. Furthermore, modern systems

Fig. 4. NUMA topology.

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1925

have increasingly larger number of cores. The recent
change in memory topology and processing power have
indeed attracted interest in re-examining traditional proc-
essing methods in the context of NUMA.

A new sort-merge technique for partitioning the join
operation was proposed in [115] to take advantage of
NUMA systems with high memory bandwidth and many
cores. In contrast to hash join and classical sort-merge join,
the parallel sort-merge strategy parallelizes also the final
merge step, and naturally operates on local memory parti-
tions. This is to take advantage of both the multi-core archi-
tecture and the large local memory bandwidth that most
NUMA systems have.

Partitioning the database index was proposed for the
Buzzard system [188]. Index operations typically incur fre-
quent pointer chasing during the traversal of a tree-based
index. In a NUMA system, these pointer operations might
end up swinging from one memory domain to another.
To address this problem, Buzzard proposes a NUMA-
aware index that partitions different parts of a prefix tree-
based index across different NUMA domains. Further-
more, Buzzard uses a set of dedicated worker threads to
access each memory domain. This guarantees that threads
only access their local memory during index traversal and
further improves the performance by using only local
comparison and swapping operations instead of expensive
locking.

Partitioning both the input data and query execution was
proposed in [189]. In contrast to plan-driven query execu-
tion, a fine-grained runtime task scheduling, termed
“morsel query execution” was proposed. The morsel-driven
query processing strategy dynamically assembles small
pieces of input data, and executes them in a pipelined fash-
ion by assigning them to a pool of worker threads. Due to
this fine-grained control over the parallelism and the input
data, morsel-driven execution is aware of the data locality
of each operator, and can schedule their execution on local
memory domains.

2.3.2 OLTP Latency

Since NUMA systems have heterogeneous access latency,
they pose a challenging problem to OLTP transactions
which are typically very sensitive to latency. The perfor-
mance of NUMA-unaware OLTP deployments on NUMA
systems is profiled in [190], where many of these systems
are deemed to have achieved suboptimal and unpredict-
able performance. To address the needs for a NUMA-
aware OLTP system, the paper proposes “hardware
islands”, in which it treats each memory domain as a logi-
cal node, and uses UNIX domain sockets to communicate
among the NUMA memory domains of a physical node.
The recently proposed ATraPos [191] is an adaptive trans-
action processing system that has been built based on this
principle.

2.3.3 Data Shuffling

Data shuffling in NUMA systems aims to transfer the data
across the NUMAdomains as efficiently as possible, by satu-
rating the transfer bandwidth of theNUMA interconnect net-
work. A NUMA-aware coordinated ring-shuffling method
was proposed in [192]. To shuffle the data across NUMA
domains as efficiently as possible, the proposed approach
forces the threads across NUMAdomains to communicate in
a coordinated manner. It divides the threads into an inner
ring and an outer ring and performs communication in a
series of rounds, during which the inner ring remains fixed
while the outer ring rotates. This rotation guarantees that all
threads across the memory domains will be paired based on
a predictable pattern, and thus all the memory channels of
the NUMA interconnect are always busy. Compared to the
naive method of shuffling the data around the domains, this
method improves the transfer bandwidth by a factor of four,
when using aNUMA systemwith four domains.

2.4 Transactional Memory

Transactional memory is a concurrency control mechanism
for shared memory access, which is analogous to atomic
database transactions. The two types of transactional
memory, i.e., software transactional memory (STM) and
hardware transactional memory (HTM), are compared in
Table 2. STM causes a significant slowdown during execu-
tion and thus has limited practical application [194], while
HTM has attracted new attention for its efficient hardware-
assisted atomic operations/transactions, since Intel intro-
duced it in its mainstream Haswell microarchitecture CPU
[102], [103]. Haswell HTM is implemented based on cache
coherency protocol. In particular, L1 cache is used as a local
buffer to mark all transactional read/write on the granular-
ity of cache lines. The propagation of changes to other
caches or main memory is postponed until the transaction
commits, and write/write and read/write conflicts are
detected using the cache coherency protocol [195]. This
HTM design incurs almost no overhead for transaction exe-
cution, but has the following drawbacks, which make HTM
only suitable for small and short transactions.

� The transaction size is limited to the size of L1 data
cache, which is usually 32 KB. Thus it is not possible
to simply execute a database transaction as one
monolithic HTM transaction.

� Cache associativity makes it more prone to false con-
flicts, because some cache lines are likely to go to the
same cache set, and an eviction of a cache line leads
to abort of the transaction, which cannot be resolved
by restarting the transaction due to the determinism
of the cache mapping strategy (refer to Section 2.1.2).

� HTM transactions may be aborted due to interrupt
events, which limits the maximum duration of HTM
transactions.

TABLE 2
Comparison between STM and HTM

1926 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

There are two instruction sets for Haswell HTM in Trans-
actional Synchronization Extensions (TSX),6 i.e., Hardware
Lock Ellison (HLE) and Restricted Transactional Memory
(RTM). HLE allows optimistic execution of a transaction by
eliding the lock so that the lock is free to other threads, and
restarting it if the transaction failed due to data race, which
mostly incurs no locking overhead, and also provides back-
ward compatibility with processors without TSX. RTM is a
new instruction set that provides the flexibility to specify a
fallback code path after a transaction aborts. The author
[102] exploits HTM based on HLE, by dividing a database
transaction into a set of relatively small HTM transactions
with timestamp ordering (TSO) concurrency control and
minimizing the false abort probability via data/index seg-
mentation. RTM is utilized in [103], which uses a three-
phase optimistic concurrency control to coordinate a whole
database transaction, and protects single data read (to guar-
antee consistency of sequence numbers) and validate/write
phases using RTM transactions.

2.5 NVRAM

Newly-emerging non-volatile memory raises the prospect
of persistent high-speed memory with large capacity. Exam-
ples of NVM include both NAND/NOR flash memory with
block-granularity addressability, and non-volatile random
access memory with byte-granularity addressability.7 Flash
memory/SSD has been widely used in practice, and
attracted a significant amount of attention in both academia
and industry [32], [33], but its block-granularity interface,
and expensive “erase” operation make it only suitable to act
as the lower-level storage, such as replacement of hard disk
[30], [32], or disk cache [198]. Thus, in this survey, we only
focus on NVRAMs that have byte addressability and com-
parable performance with DRAM, and can be brought to
the main memory layer or even the CPU cache layer.

Advanced NVRAM technologies, such as phase change
memory [199], Spin-Transfer Torque Magnetic RAM (STT-
MRAM) [200], and Memristors [201], can provide orders of
magnitude better performance than either conventional
hard disk or flash memory, and deliver excellent perfor-
mance on the same order of magnitude as DRAM, but with
persistent writes [202]. The read latency of PCM is only
two-five times slower than DRAM, and STT-MRAM and
Memristor could even achieve lower access latency than
DRAM [118], [128], [129], [203]. With proper caching, care-
fully architected PCM could also match DRAM perfor-
mance [159]. Besides, NVRAM is speculated to have much
higher storage density than DRAM, and consume much less
power [204]. Although NVRAM is currently only available
in small sizes, and the cost per bit is much higher than that
of hard disk or flash memory or even DRAM, it is estimated
that by the next decade, we may have a single PCM with 1

TB and Memristor with 100 TB, at price close to the enter-
prise hard disk [128], [129]. The advent of NVRAM offers
an intriguing opportunity to revolutionize the data manage-
ment and re-think the system design.

It has been shown that simply replacing disk with
NVRAM is not optimal, due to the high overhead from the
cumbersome file system interface (e.g., file system cache
and costly system calls), block-granularity access and high
economic cost, etc. [127], [130], [205]. Instead, NVRAM has
been proposed to be placed side-by-side with DRAM on the
memory bus, available to ordinary CPU loads and
stores, such that the physical address space can be
divided between volatile and non-volatile memory [205], or
be constituted completely by non-volatile memory [155],
[206], [207], equipped with fine-tuned OS support [208],
[209]. Compared to DRAM, NVRAM exhibits its distinct
characteristics, such as limited endurance, write/read
asymmetry, uncertainty of ordering and atomicity [128],
[205]. For example, the write latency of PCM is more than
one order of magnitude slower than its read latency [118].
Besides, there is no standard mechanisms/protocols to
guarantee the ordering and atomicity of NVRAM writes
[128], [205]. The endurance problem can be solved by wear-
leveling techniques in the hardware or middleware levels
[206], [207], [210], which can be easily hidden from the
software design, while the read/write asymmetry, and
ordering and atomicity of writes, must be taken into
consideration in the system/algorithm design [204].

Promisingly, NVRAM can be architected as the main
memory in general-purpose systems with well-designed
architecture [155], [206], [207]. In particular, longer write
latency of PCM can be solved by data comparison writes
[211], partial writes [207], or specialized algorithms/struc-
tures that trade writes for reads [118], [204], [212], which
can also alleviate the endurance problem. And current solu-
tions to the write ordering and atomicity problems are
either relying on some newly-proposed hardware primi-
tives, such as atomic 8-byte writes and epoch barriers [129],
[205], [212], or leveraging existing hardware primitives,
such as cache modes (e.g., write-back, write-combining),
memory barriers (e.g., mfence), cache line flush (e.g.,
clflush) [128], [130], [213], which, however, may incur
non-trivial overhead. General libraries and programming
interfaces are proposed to expose NVRAM as a persistent
heap, enabling NVRAM adoption in an easy-to-use manner,
such as NV-heaps [214], Mnemosyne [215], NVMalloc [216],
and recovery and durable structures [213], [217]. In addi-
tion, file system support enables a transparent utilization of
NVRAM as a persistent storage, such as Intel’s PMFS [218],
BPFS [205], FRASH [219], ConquestFS [220], SCMFS [221],
which also take advantage of NVRAM’s byte addressability.

Besides, specific data structures widely used in data-
bases, such as B-Tree [212], [217], and some common query
processing operators, such as sort and join [118], are starting
to adapt to and take advantage of NVRAM properties.
Actually, the favorite goodies brought to databases by
NVRAM is its non-volatility property, which facilitates a
more efficient logging and fault tolerance mechanisms
[127], [128], [129], [130]. But write atomicity and determin-
istic orderings should be guaranteed and achieved effi-
ciently via carefully designed algorithms, such as group

6. Intel disabled its TSX feature on Haswell, Haswell-E, Haswell-EP
and early Broadwell CPUs in August 2014 due to a bug. Currently Intel
only provides TSX on Intel Core M CPU with Broadwell architecture,
and the newly-released Xeon E7 v3 CPU with Haswell-EX architecture
[196], [197].

7. NVM and NVRAM usually can be used exchangeably without
much distinction. NVRAM is also referred to as Storage-Class Memory
(SCM), Persistent Memory (PM) or Non-Volatile Byte-addressable
Memory (NVBM).

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1927

commit [127], passive group commit [128], two-step logging
(i.e., populating the log entry in DRAM first and then flush-
ing it to NVRAM) [130]. Also the centralized logging bottle-
neck should be eliminated, e.g., via distributed logging
[128], decentralized logging [130]. Otherwise the high per-
formance brought by NVRAM would be degraded by the
legacy software overhead (e.g., centention for the central-
ized log).

3 IN-MEMORY DATA STORAGE SYSTEMS

In this section, we introduce some in-memory databases,
including both relational and NoSQL databases. We also
cover a special category of in-memory storage system, i.e.,
cache system, which is used as a cache between the applica-
tion server and the underlying database. In most relational
databases, both OLTP and OLAP workloads are supported
inherently. The lack of data analytics operations in NoSQL
databases results in an inevitable data transmission cost for
data analytics jobs [172].

3.1 In-Memory Relational Databases

Relational databases have been developed and enhanced
since 1970s, and the relational model has been dominating
in almost all large-scale data processing applications since
early 1990s. Some widely used relational databases include
Oracle, IBM DB2, MySQL and PostgreSQL. In relational
databases, data is organized into tables/relations, and
ACID properties are guaranteed. More recently, a new type
of relational databases, called NewSQL (e.g., Google Span-
ner [8], H-Store [36]) has emerged. These systems seek to
provide the same scalability as NoSQL databases for OLTP
while still maintaining the ACID guarantees of traditional
relational database systems.

In this section, we focus on in-memory relational data-
bases, which have been studied since 1980s [73]. However,
there has been a surge in interests in recent years [222].
Examples of commercial in-memory relational databases
include SAP HANA [77], VoltDB [150], Oracle TimesTen
[38], SolidDB [40], IBM DB2 with BLU Acceleration [223],
[224], Microsoft Hekaton [37], NuoDB [43], eXtremeDB
[225], Pivotal SQLFire [226], and MemSQL [42]. There are
also well known research/open-source projects such as H-
Store [36], HyPer [35], Silo [39], Crescando [227], HYRISE
[176], and MySQL Cluster NDB [228].

3.1.1 H-Store / VoltDB

H-Store [36], [229] or its commercial version VoltDB [150]
is a distributed row-based in-memory relational database
targeted for high-performance OLTP processing. It is
motivated by two observations: first, certain operations in
traditional disk-based databases, such as logging, latching,
locking, B-tree and buffer management operations, incur
substantial amount of the processing time (more than 90
percent) [222] when ported to in-memory databases;
second, it is possible to re-design in-memory database
processing so that these components become unnecessary.
In H-Store, most of these “heavy” components are removed
or optimized, in order to achieve high-performance transac-
tion processing.

Transaction execution in H-Store is based on the assump-
tion that all (at least most of) the templates of transactions
are known in advance, which are represented as a set of
compiled stored procedures inside the database. This
reduces the overhead of transaction parsing at runtime, and
also enables pre-optimizations on the database design and
light-weight logging strategy [131]. In particular, the data-
base can be more easily partitioned to avoid multi-partition
transactions [140], and each partition is maintained by a site,
which is single-threaded daemon that processes transac-
tions serially and independently without the need for
heavy-weight concurrency control (e.g., lock) in most cases
[101]. Next, we will elaborate on its transaction processing,
data overflow and fault-tolerance strategies.

Transaction processing. Transaction processing in H-Store
is conducted on the partition/site basis. A site is an inde-
pendent transaction processing unit that executes transac-
tions sequentially, which makes it feasible only if a majority
of the transactions are single-sited. This is because if a trans-
action involves multiple partitions, all these sites are
sequentialized to process this distributed transaction in col-
laboration (usually 2PC), and thus cannot process transac-
tions independently in parallel. H-Store designs a skew-
aware partitioning model—Horticulture [140]—to automati-
cally partition the database based on the database schema,
stored procedures and a sample transaction workload, in
order to minimize the number of multi-partition transac-
tions and meanwhile mitigate the effects of temporal skew
in the workload. Horticulture employs the large-neighbor-
hood search (LNS) approach to explore potential partitions
in a guided manner, in which it also considers read-only
table replication to reduce the transmission cost of frequent
remote access, secondary index replication to avoid broad-
casting, and stored procedure routing attributes to allow an
efficient routing mechanism for requests.

The Horticulture partitioning model can reduce the num-
ber of multi-partition transactions substantially, but not
entirely. The concurrency control scheme must therefore
be able to differentiate single partition transactions from
multi-partition transactions, such that it does not incur high
overhead where it is not needed (i.e., when there are only
single-partition transactions). H-Store designs two low over-
head concurrency control schemes, i.e., light-weight locking
and speculative concurrency control [101]. Light-weight
locking scheme reduces the overhead of acquiring locks and
detecting deadlock by allowing single-partition transactions
to execute without locks when there are no active multi-par-
tition transactions. And speculative concurrency control
scheme can proceed to execute queued transactions specula-
tively while waiting for 2PC to finish (precisely after the last
fragment of a multi-partition transaction has been executed),
which outperforms the locking scheme as long as there are
few aborts or few multi-partition transactions that involve
multiple rounds of communication.

In addition, based on the partitioning and concurrency
control strategies, H-Store utilizes a set of optimizations on
transaction processing, especially for workload with inter-
leaving of single- and multi-transactions. In particular, to
process an incoming transaction (a stored procedure with
concrete parameter values), H-Store uses a Markov model-

1928 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

based approach [111] to determine the necessary optimiza-
tions by predicting the most possible execution path and
the set of partitions that it may access. Based on these pre-
dictions, it applies four major optimizations accordingly,
namely (1) execute the transaction at the node with the par-
tition that it will access the most; (2) lock only the partitions
that the transaction accesses; (3) disable undo logging for
non-aborting transactions; (4) speculatively commit the
transaction at partitions that it no longer needs to access.

Data overflow. While H-Store is an in-memory database, it
also utilizes a technique, called anti-caching [133], to allow
data bigger than the memory size to be stored in the data-
base, without much sacrifice of performance, by moving
cold data to disk in a transactionally-safe manner, on the
tuple-level, in contrast to the page-level for OS virtual mem-
ory management. In particular, to evict cold data to disk, it
pops the least recently used tuples from the database to a set
of block buffers that will be written out to disks, updates the
evicted table that keeps track of the evicted tuples and all
the indexes, via a special eviction transaction. Besides, non-
blocking fetching is achieved by simply aborting the transac-
tion that accesses evicted data and then restarting it at a later
point once the data is retrieved from disks, which is further
optimized by executing a pre-pass phase before aborting to
determine all the evicted data that the transaction needs so
that it can be retrieved in one go without multiple aborts.

Fault tolerance. H-Store uses a hybrid of fault-tolerance
strategies, i.e., it utilizes a replica set to achieve high avail-
ability [36], [150], and both checkpointing and logging for
recovery in case that all the replicas are lost [131]. In particu-
lar, every partition is replicated to k sites, to guarantee
k-safety, i.e., it still provides availability in case of simulta-
neous failure of k sites. In addition, H-Store periodically
checkpoints all the committed database states to disks via a
distributed transaction that puts all the sites into a copy-on-
write mode, where updates/deletes cause the rows to be
copied to a shadow table. Between the interval of two check-
pointings, command logging scheme [131] is used to
guarantee the durability by logging the commands (i.e.,
transaction/stored procedure identifier and parameter val-
ues), in contrast to logging each operation (insert/delete/
update) performed by the transaction as the traditional
ARIES physiological logging does [146]. Besides, memory-
resident undo log can be used to support rollback for some
abort-able transactions. It is obvious that command logging
has a much lower runtime overhead than physiological log-
ging as it does less work at runtime and writes less data to
disk, however, at the cost of an increased recovery time.
Therefore, command logging scheme is more suitable for
short transactions where node failures are not frequent.

3.1.2 Hekaton

Hekaton [37] is a memory-optimized OLTP engine fully
integrated into Microsoft SQL server, where Hekaton
tables8 and regular SQL server tables can be accessed at the
same time, thereby providing much flexibility to users. It is
designed for high-concurrency OLTP, with utilization of

lock-free or latch-free data structures (e.g., latch-free hash
and range indexes) [86], [230], [231], and an optimistic
MVCC technique [107]. It also incorporates a framework,
called Siberia [134], [232], [233], to manage hot and cold data
differently, equipping it with the capacity to handle Big Data
both economically and efficiently. Furthermore, to relieve
the overhead caused by interpreter-based query processing
mechanism in traditional databases, Hekaton adopts the
compile-once-and-execute-many-times strategy, by compil-
ing SQL statements and stored procedures into C code first,
which will then be converted into native machine code [37].
Specifically, an entire query plan is collapsed into a single
function using labels and gotos for code sharing, thus avoid-
ing the costly argument passing between functions and
expensive function calls, with the fewest number of instruc-
tions in the final compiled binary. In addition, durability is
ensured in Hekaton by using incremental checkpoints, and
transaction logs with logmerging and group commit optimi-
zations, and availability is achieved by maintaining highly
available replicas [37]. We shall next elaborate on its concur-
rency control, indexing and hot/cold datamanagement.

Multi-version concurrency control.Hekaton adopts optimis-
tic MVCC to provide transaction isolation without locking
and blocking [107]. Basically, a transaction is divided into
two phases, i.e., normal processing phase where the transac-
tion never blocks to avoid expensive context switching, and
validation phase where the visibility of the read set and
phantoms are checked,9 and then outstanding commit
dependencies are resolved and logging is enforced. Specifi-
cally, updates will create a new version of record rather than
updating the existing one in place, and only records whose
valid time (i.e., a time range denoted by start and end time-
stamps) overlaps the logical read time of the transaction are
visible. The uncommitted records are allowed to be specula-
tively read/ignored/updated if those records have reached
the validation phase, in order to advance the processing, and
not to block during the normal processing phase. But specu-
lative processing enforces commit dependencies, which may
cause cascaded abort and must be resolved before commit-
ting. It utilizes atomic operations for updating on the valid
time of records, visibility checking and conflict detection,
rather than locking. Finally, a version of a record is garbage-
collected (GC) if it is no longer visible to any active transac-
tion, in a cooperative and parallelmanner. That is, theworker
threads running the transaction workload can remove the
garbage when encountering it, which also naturally provides
a parallel GC mechanism. Garbage in the never-accessed
area will be collected by a dedicated GC process.

Latch-free Bw-Tree. Hekaton proposes a latch-free B-tree
index, called Bw-tree [86], [230], which uses delta updates
to make state changes, based on atomic compare-and-swap
(CAS) instructions and an elastic virtual page10 manage-
ment subsystem—LLAMA [231]. LLAMA provides a

8. Hekaton tables are declared as “memory optimized” in SQL
server, to distinguish with normal tables.

9. Some of validation checks are not necessary, depending on the
isolation levels. For example, no validation is required for read commit-
ted and snapshot isolation, and only read set visibility check is needed for
repeatable read. Both checks are required only for serializable isolation.

10. The virtual page here does not mean that used by OS. There is no
hard limit on the page size, and pages grow by prepending “delta
pages” to the base page.

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1929

virtual page interface, on top of which logical page IDs
(PIDs) are used by Bw-tree instead of pointers, which can
be translated into physical address based on a mapping
table. This allows the physical address of a Bw-tree node to
change on every update, without requiring the address
change to be propagated to the root of the tree.

In particular, delta updates are performed by prepending
the update delta page to the prior page and atomically
updating the mapping table, thus avoiding update-in-place
which may result in costly cache invalidation especially on
multi-socket environment, and preventing the in-use data
from being updated simultaneously, enabling latch-free
access. The delta update strategy applies to both leaf node
update achieved by simply prepending a delta page to
the page containing the prior leaf node, and structure modi-
fication operations (SMO) (e.g., node split and merge) by a
series of non-blocking cooperative and atomic delta
updates, which are participated by any worker thread
encountering the uncompleted SMO [86]. Delta pages and
base page are consolidated in a later pointer, in order to
relieve the search efficiency degradation caused by the long
chain of delta pages. Replaced pages are reclaimed by the
epoch mechanism [234], to protect data potentially used by
other threads, from being freed too early.

Siberia in Hekaton. Project Siberia [134], [232], [233] aims
to enable Hekaton to automatically and transparently main-
tain cold data on the cheaper secondary storage, allowing
more data fit in Hekaton than the available memory. Instead
of maintaining an LRU list like H-Store Anti-Caching [133],
Siberia performs offline classification of hot and cold data
by logging tuple accesses first, and then analyzing them
offline to predict the top K hot tuples with the highest
estimated access frequencies, using an efficient parallel clas-
sification algorithm based on exponential smoothing [232].
The record access logging method incurs less overhead than
an LRU list in terms of both memory and CPU usage. In
addition, to relieve the memory overhead caused by the
evicted tuples, Siberia does not store any additional infor-
mation in memory about the evicted tuples (e.g., keys in the
index, evicted table) other than the multiple variable-size
Bloom filters [235] and adaptive range filters [233] that are
used to filter the access to disk. Besides, in order to make it
transactional even when a transaction accesses both hot and
cold data, it transactionally coordinates between hot and
cold stores so as to guarantee consistency, by using a dura-
ble update memo to temporarily record notices that specify
the current status of cold records [134].

3.1.3 HyPer/ScyPer

HyPer [35], [236], [237] or its distributed version ScyPer [149]
is designed as a hybrid OLTP and OLAP high performance
in-memory database with utmost utilization of modern
hardware features. OLTP transactions are executed sequen-
tially in a lock-less style which is first advocated in [222] and
parallelism is achieved by logically partitioning the database
and admitting multiple partition-constrained transactions in
parallel. It can yield an unprecedentedly high transaction
rate, as high as 100,000 per second [35]. The superior perfor-
mance is attributed to the low latency of data access in in-
memory databases, the effectiveness of the space-efficient

Adaptive Radix Tree [87] and the use of stored transaction
procedures. OLAP queries are conducted on a consistent
snapshot achieved by the virtual memory snapshot mecha-
nism based on hardware-supported shadow pages, which is
an efficient concurrency control model with low mainte-
nance overhead. In addition, HyPer adopts a dynamic query
compilation scheme, i.e., the SQL queries are first compiled
into assembly code [112], which can then be executed
directly using an optimizing Just-in-Time (JIT) compiler pro-
vided by LLVM [167]. This query evaluation follows a data-
centric paradigm by applying as many operations on a data
object as possible, thus keeping data in the registers as long
as possible to achieve register-locality.

The distributed version of HyPer, i.e., ScyPer [149],
adopts a primary-secondary architecture, where the pri-
mary node is responsible for all the OLTP requests and
also acts as the entry point for OLAP queries, while sec-
ondary nodes are only used to execute the OLAP queries.
To synchronize the updates from the primary node to the
secondary nodes, the logical redo log is multicast to all
secondary nodes using Pragmatic General Multicast
protocol (PGM), where the redo log is replayed to catch
up with the primary. Further, the secondary nodes can
subscribe to specific partitions, thus allowing the provi-
sioning of secondary nodes for specific partitions and
enabling a more flexible multi-tenancy model. In the cur-
rent version of ScyPer, there is only one primary node,
which holds all the data in memory, thus bounding the
database size or the transaction processing power to one
server. Next, we will elaborate on HyPer’s snapshot
mechanism, register-conscious compilation scheme and
the ART indexing.

Snapshot in HyPer. HyPer constructs a consistent snap-
shot by fork-ing a child process (via fork() system call) with
its own copied virtual memory space [35], [147], which
involves no software concurrency control mechanism but
the hardware-assisted virtual memory management with
little maintenance overhead. By fork-ing a child process, all
the data in the parent process is virtually “copied” to the
child process. It is however quite light-weight as the copy-
on-write mechanism will trigger the real copying only
when some process is trying to modify a page, which is
achieved by the OS and the memory management unit
(MMU). As reported in [236], the page replication is efficient
as it can be done in 2 ms. Consequently, a consistent snap-
shot can be constructed efficiently for the OLAP queries
without heavy synchronization cost.

In [147], four snapshot mechanisms were benchmarked:
software-based Tuple Shadowingwhich generates a new ver-
sion when a tuple is modified, software-based Twin Tuple
which always keeps two versions of each tuple, hardware-
based Page Shadowing used by HyPer, and HotCold Shad-
owingwhich combines Tuple Shadowing and hardware-sup-
ported Page Shadowing by clustering update-intensive
objects. The study shows that Page Shadowing is superior in
terms of OLTP performance, OLAP query response time and
memory consumption. The most time-consuming task in the
creation of a snapshot in the Page Shadowing mechanism is
the copying of a process’s page table, which can be reduced
by using huge page (2 MB per page on x86) for cold data
[135]. The hot or cold data is monitored and clustered with a

1930 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

hardware-assisted approach by reading/resetting the young
and dirty flags of a page. Compression is applied on cold data
to further improve the performance of OLAP workload and
reducememory consumption [135].

Snapshot is not only used for OLAP queries, but also for
long-running transactions [238], as these long-running trans-
actions will block other short good-natured transactions in
the serial execution model. In HyPer, these ill-natured trans-
actions are identified and tentatively executed on a child
process with a consistent snapshot, and the changesmade by
these transactions are effected by issuing a deterministic
“apply transaction”, back to the main database process. The
apply transaction validates the execution of the tentative
transaction, by checking that all reads performed on
the snapshot are identical to what would have been read on
the main database if view serializability is required, or by
checking the writes on the snapshot are disjoint from the
writes by all transactions on the main database after the
snapshot was created if the snapshot isolation is required. If
the validation succeeds, it applies the writes to the main
database state. Otherwise an abort is reported to the client.

Register-conscious compilation. To process a query, HyPer
translates it into compact and efficient machine code using
the LLVM compiler framework [112], [167], rather than
using the classical iterator-based query processing model.
The HyPer JIT compilation model is designed to avoid func-
tion calls by extending recursive function calls into a code
fragment loop, thus resulting in better code locality and
data locality (i.e., temporal locality for CPU registers),
because each code fragment performs all actions on a tuple
within one execution pipeline during which the tuple is
kept in the registers, before materializing the result into the
memory for the next pipeline.

As an optimized high-level language compiler (e.g., C++)
is slow, HyPer uses the LLVM compiler framework to gen-
erate portable assembler code for an SQL query. In particu-
lar, when processing an SQL query, it is first processed as
per normal, i.e., the query is parsed, translated and opti-
mized into an algebraic logical plan. However, the algebraic
logical plan is not translated into an executable physical
plan as in the conventional scheme, but instead compiled
into an imperative program (i.e., LLVM assembler code)
which can then be executed directly using the JIT compiler
provided by LLVM. Nevertheless, the complex part of
query processing (e.g., complex data structure management,
sorting) is still written in C++, which is pre-compiled. As
the LLVM code can directly call the native C++ method
without additional wrapper, C++ and LLVM interact with
each other without performance penalty [112]. However,
there is a trade-off between defining functions, and inlining
code in one compact code fragment, in terms of code clean-
ness, the size of the executable file, efficiency, etc.

ART Indexing. HyPer uses an adaptive radix tree [87] for
efficient indexing. The property of the radix tree guarantees
that the keys are ordered bit-wise lexicographically, making
it possible for range scan, prefix lookup, etc. Larger span of
radix tree can decrease the tree height linearly, thus speed-
ing up the search process, but increase the space consump-
tion exponentially. ART achieves both space and time
efficiency by adaptively using different inner node sizes
with the same, relatively large span, but different fan-out.

Specifically, there are four types of inner nodes with a
span of 8 bits but different capacities: Node4, Node16,
Node48 and Node256, which are named according to their
maximum capacity of storing child node pointers. In partic-
ular, Node4/Node16 can store up to 4/16 child pointers
and uses an array of length 4/16 for sorted keys and another
array of the same length for child pointers. Node48 uses a
256-element array to directly index key bits to the pointer
array with capacity of 48, while Node256 is simply an array
of 256 pointers as normal radix tree node, which is used to
store between 49 to 256 entries. Fig. 5 illustrates the struc-
tures of Node4, Node16, Node48 and Node256. Lazy expan-
sion and path compression techniques are adopted to
further reduce the memory consumption.

3.1.4 SAP HANA

SAP HANA [77], [239], [240] is a distributed in-memory
database featured for the integration of OLTP and OLAP
[41], and the unification of structured (i.e., relational table)
[74], semi-structured (i.e., graph) [241] and unstructured
data (i.e., text) processing. All the data is kept in memory as
long as there is enough space available, otherwise entire
data objects (e.g., tables or partitions) are unloaded from
memory and reloaded into memory when they are needed
again. HANA has the following features:

� It supports both row- and column-oriented stores for
relational data, in order to optimize different query
workloads. Furthermore, it exploits columnar data
layout for both efficient OLAP and OLTP by adding
two levels of delta data structures to alleviate the
inefficiency of insertion and deletion operations in
columnar data structures [74].

� It provides rich data analytics functionality by offer-
ing multiple query language interfaces (e.g., stan-
dard SQL, SQLScript, MDX, WIPE, FOX and R),
which makes it easy to push down more application
semantics into the data management layer, thus
avoiding heavy data transfer cost.

� It supports temporal queries based on the Timeline
Index [242] naturally as data is versioned in HANA.

� It provides snapshot isolation based on multi-ver-
sion concurrency control, transaction semantics
based on optimized two-phase commit protocol
(2PC) [243], and fault-tolerance by logging and peri-
odic checkpointing into GPFS file system [148].

We will elaborate only on the first three features, as the
other feature is a fairly common technique used in the
literature.

Relational stores. SAP HANA supports both row- and col-
umn-oriented physical representations of relational tables.
Row store is beneficial for heavy updates and inserts, as

Fig. 5. ART inner node structures.

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1931

well as point queries that are common in OLTP, while col-
umn store is ideal for OLAP applications as they usually
access all values of a column together, and few columns at a
time. Another benefit for column-oriented representation is
that it can utilize compression techniques more effectively
and efficiently. In HANA, a table/partition can be config-
ured to be either in the row store or in the column store, and
it can also be re-structured from one store to the other.
HANA also provides a storage advisor [244] to recommend
the optimal representation based on data and query charac-
teristics by taking both query cost and compression rate
into consideration.

As a table/partition only exists in either a row store or a
column store, and both have their own weaknesses, HANA
designs a three-level column-oriented unified table struc-
ture, consisting of L1-delta, L2-delta and main store, which
is illustrated in Fig. 6, to provide efficient support for both
OLTP and OLAP workloads, which shows that column
store can be deployed efficiently for OLTP as well [41], [74].
In general, a tuple is first stored in L1-delta in row format,
then propagated to L2-delta in column format and finally
merged with the main store with heavier compression. The
whole process of the three stages is called a lifecycle of a
tuple in HANA term.

Rich data analytics support. HANA supports various
programming interfaces for data analytics (i.e., OLAP),
including standard SQL for generic data management func-
tionality, and more specialized languages such as SQL
script, MDX, FOX, WIPE [74], [240] and R [245]. While SQL
queries are executed in the same manner as in a traditional
database, other specialized queries have to be transformed.
These queries are first parsed into an intermediate abstract
data flow model called “calculation graph model”, where
source nodes represent persistent or intermediate tables
and inner nodes reflect logical operators performed by these
queries, and then transformed into execution plans similar
to that of an SQL query. Unlike other systems, HANA sup-
ports R scripting as part of the system to enable better opti-
mization of ad-hoc data analytics jobs. Specifically, R scripts
can be embedded into a custom operator in the calculation
graph [245]. When an R operator is to be executed, a sepa-
rate R runtime is invoked using the Rserve package [246].
As the column format of HANA column-oriented table is
similar to R’s vector-oriented dataframe, there is little over-
head in the transformation from table to dataframe. Data
transfer is achieved via shared memory, which is an effi-
cient inter-process communication (IPC) mechanism. With
the help of RICE package [245], it only needs to copy once to
make the data available for the R process, i.e., it just copies
the data from the database to the shared memory section,

and the R runtime can access the data from the shared
memory section directly.

Temporal query. HANA supports temporal queries, such
as temporal aggregation, time travel and temporal join,
based on a unified index structure called the Timeline
Index [88], [242], [247]. For every logical table, HANA
keeps the current version of the table in a Current Table and
the whole history of previous versions in a Temporal Table,
accompanied with a Timeline Index to facilitate temporal
queries. Every tuple of the Temporal Table carries a valid
interval, from its commit time to its last valid time, at which
some transaction invalidates that value. Transaction Time
in HANA is represented by discrete, monotonically
increasing versions. Basically, the Timeline Index maps each
version to all the write events (i.e., records in the Temporal
Table) that committed before or at that version. A Timeline
Index consists of an Event List and a Version Map, where
the Event List keeps track of every invalidation or validation
event, and the Version Map keeps track of the sequence of
events that can be seen by each version of the database.
Consequently due to the fact that all visible rows of the
Temporal Table at every point in time are tracked, tempo-
ral queries can be implemented by scanning Event List and
Version Map concurrently.

To reduce the full scan cost for constructing a temporal
view, HANA augments the difference-based Timeline Index
with a number of complete view representations, called
checkpoints, at a specific time in the history. In particular, a
checkpoint is a bit vector with length equal to the number of
rows in the Temporal Table, which represents the visible
rows of the Temporal Table at a certain time point (i.e., a cer-
tain version). With the help of checkpoints, a temporal view
at a certain time can be obtained by scanning from the latest
checkpoint before that time, rather than scanning from the
start of the Event List each time.

3.2 In-Memory NoSQL Databases

NoSQL is short for Not Only SQL, and a NoSQL database
provides a different mechanism from a relational database
for data storage and retrieval. Data in NoSQL databases is
usually structured as a tree, graph or key-value rather than
a tabular relation, and the query language is usually not
SQL as well. NoSQL database is motivated by its simplicity,
horizontal scaling and finer control over availability, and it
usually compromises consistency in favor of availability
and partition tolerance [25], [248].

With the trend of “Memory is the new disk”, in-memory
NoSQL databases are flourishing in recent years. There are
key-value stores such as Redis [66], RAMCloud [2], Mem-
epiC [60], [138], Masstree [249], MICA [64], Mercury [250],
Citrusleaf/Aerospike [34], Kyoto/Tokyo Cabinet [251], Pilaf
[252], document stores such as MongoDB [65], Couchbase
[253], graph databases such as Trinity [46], Bitsy [254], RDF
databases such as OWLIM [255], WhiteDB [50], etc. There
are some systems that are partially in-memory, such as
MongoDB [65], MonetDB [256], MDB [257], as they use
memory-mapped files to store data such that the data can
be accessed as if it was in the memory.

In this section, we will introduce some representative in-
memory NoSQL databases, including MemepiC [60], [138],

Fig. 6. HANA hybrid store.

1932 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

MongoDB [65], RAMCloud [2], [75], [126], [258], [259], Redis
[66] and some graph databases.

3.2.1 MemepiC

MemepiC [60] is the in-memory version of epiC [23], an
extensible and scalable system based on Actor Concurrent
programming model [260], which has been designed for proc-
essing Big Data. It not only provides low latency storage
service as a distributed key-value store, but also integrates
in-memory data analytics functionality to support online
analytics. With an efficient data eviction and fetching mech-
anism, MemepiC has been designed to maintain data that is
much larger than the available memory, without severe per-
formance degradation. We shall elaborate MemepiC in
three aspects: system calls reduction, integration of storage
service and analytics operations, and virtual memory
management.

Less-system-call design. The conventional database design
that relies on system calls for communication with hard-
ware or synchronization is no longer suitable for achieving
good performance demanded by in-memory systems, as the
overhead incurred by system calls is detrimental to the
overall performance. Thus, MemepiC subscribes to the less-
system-call design principle, and attempts to reduce as
much as possible on the use of system calls in the storage
access (via memory-mapped file instead), network commu-
nication (via RDMA or library-based networking), synchro-
nization (via transactional memory or atomic primitives)
and fault-tolerance (via remote logging) [60].

Integration of storage service and analytics operations. In
order to meet the requirement of online data analytics,
MemepiC also integrates data analytics functionality, to
allow analyzing data where it is stored [60]. With the inte-
gration of data storage and analytics, it significantly elimi-
nates the data movement cost, which typically dominates in
conventional data analytics scenarios, where data is first
fetched from the database layer to the application layer,
only after which it can be analyzed [172]. The synchroniza-
tion between data analytics and storage service is achieved
based on atomic primitives and fork-based virtual snapshot.

User-space virtual memory management (UVMM). The
problem of relatively smaller size of main memory is allevi-
ated in MemepiC via an efficient user-space virtual memory
management mechanism, by allowing data to be freely
evicted to disks when the total data size exceeds the mem-
ory size, based on a configurable paging strategy [138]. The
adaptability of data storage enables a smooth transition
from disk-based to memory-based databases, by utilizing a
hybrid of storages. It takes advantage of not only semantics-
aware eviction strategy but also hardware-assisted I/O and
CPU efficiency, exhibiting a great potential as a more
general approach of “Anti-Caching” [138]. In particular, it
adopts the following strategies.

� A hybrid of access tracking strategies, including
user-supported tuple-level access logging, MMU-
assisted page-level access tracking, virtual memory
area (VMA)-protection-based method and malloc-
injection, which achieves light-weight and seman-
tics-aware access tracking.

� Customized WSCLOCK paging strategy based on
fine-grained access traces collected by above-men-
tioned access tracking methods, and other alterna-
tive strategies including LRU, aging-based LRU and
FIFO, which enables a more accurate and flexible
online eviction strategy.

� VMA-protection-based book-keeping method, which
incurs less memory overhead for book-keeping
the location of data, and tracking the data access in
one go.

� Larger data swapping unit with a fast compression
technique (i.e., LZ4 [261]) and kernel-supported
asynchronous I/O, which can take advantage of the
kernel I/O scheduler and block I/O device, and
reduce the I/O traffic significantly.

3.2.2 MongoDB

MongoDB [65] is a document-oriented NoSQL database,
with few restrictions on the schema of a document (i.e.,
BSON-style). Specifically, a MongoDB hosts a number of
databases, each of which holds a set of collections of docu-
ments. MongoDB provides atomicity at the document-level,
and indexing and data analytics can only be conducted
within a single collection. Thus “cross-collection” queries
(such as join in traditional databases) are not supported. It
uses primary/secondary replication mechanism to guaran-
tee high availability, and sharding to achieve scalability. In
a sense, MongoDB can also act as a cache for documents
(e.g., HTML files) since it provides data expiration
mechanism by setting TTL (Time-to-Live) for documents.

We will discuss two aspects of MongoDB in detail in the
following sections, i.e., the storage and data analytics
functionality.

Memory-mapped file. MongoDB utilizes memory-mapped
files for managing and interacting with all its data. It can act
as a fully in-memory database if the total data can fit into
the memory. Otherwise it depends on the virtual-memory
manager (VMM) which will decide when and which page
to page in or page out. Memory-mapped file offers a way to
access the files on disk in the same way we access the
dynamic memory—through pointers. Thus we can get the
data on disk directly by just providing its pointer (i.e., vir-
tual address), which is achieved by the VMM that has been
optimized to make the paging process as fast as possible. It
is typically faster to access memory-mapped files than direct
file operations because it does not need a system call for
normal access operations and it does not require memory
copy from kernel space to user space in most operating sys-
tems. On the other hand, the VMM is not able to adapt to
MongoDB’s own specific memory access patterns, espe-
cially when multiple tenants reside in the same machine. A
more intelligent ad-hoc scheme would be able to manage
the memory more effectively by taking specific usage
scenarios into consideration.

Data analytics. MongoDB supports two types of data ana-
lytics operations: aggregation (i.e., aggregation pipeline and
single purpose aggregation operations in MongoDB term)
and MapReduce function which should be written in Java-
Script language. Data analytics on a sharded cluster that
needs central assembly is conducted in two steps:

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1933

� The query router divides the job into a set of tasks
and distributes the tasks to the appropriate sharded
instances, which will return the partial results back
to the query router after finishing the dedicated
computations.

� The query router will then assemble the partial
results and return the final result to the client.

3.2.3 RAMCloud

RAMCloud [2], [75], [126], [258], [259] is a distributed in-
memory key-value store, featured for low latency, high
availability and high memory utilization. In particular, it
can achieve tens of microseconds latency by taking advan-
tage of low-latency networks (e.g., Infiniband and Myrinet),
and provide “continuous availability” by harnessing large
scale to recover in 1-2 seconds from system failure. In addi-
tion, it adopts a log-structured data organization with a
two-level cleaning policy to structure the data both in mem-
ory and on disks. This results in high memory utilization
and a single unified data management strategy. The
architecture of RAMCloud consists of a coordinator who
maintains the metadata in the cluster such as cluster mem-
bership, data distribution, and a number of storage servers,
each of which contains two components, a master module
which manages the in-memory data and handles read/
write requests from clients, and a backup module which
uses local disks or flash memory to backup replicas of data
owned by other servers.

Data organization. Key-value objects in RAMCloud are
grouped into a set of tables, each of which is individually
range-partitioned into a number of tablets based on the
hash-codes of keys. RAMCloud relies on the uniformity of
hash function to distribute objects in a table evenly in pro-
portion to the amount of hash space (i.e., the range) a stor-
age server covers. A storage server uses a single log to store
the data, and a hash table for indexing. Data is accessed via
the hash table, which directs the access to the current ver-
sion of objects.

RAMCloud adopts a log-structured approach of memory
management rather than traditional memory allocation
mechanisms (e.g., C library’s malloc), allowing 80-90 percent
memory utilization by eliminating memory fragmentation.
In particular, a log is divided into a set of segments. As the
log structure is append-only, objects are not allowed to be
deleted or updated in place. Thus a periodic clean job
should be scheduled to clean up the deleted/stale objects
to reclaim free space. RAMCloud designs an efficient two-
level cleaning policy.

� It schedules a segment compaction job to clean the
log segment in memory first whenever the free
memory is less than 10 percent, by copying its live
data into a smaller segment and freeing the original
segment.

� When the data on disk is larger than that in memory
by a threshold, a combined cleaning job starts, cleaning
both the log in memory and on disk together.

A two-level cleaning policy can achieve a high memory
utilization by cleaning the in-memory log more frequently,
and meanwhile reduce disk bandwidth requirement by try-
ing to lower the disk utilization (i.e., increase the percentage

of deleted/stale data) since this can avoid copying a large
percentage of live data on disk during cleaning.

Fast crash recovery. One big challenge for in-memory stor-
age is fault-tolerance, as the data is resident in the volatile
DRAM. RAMCloud uses replication to guarantee durability
by replicating data in remote disks, and harnesses the large
scale of resources (e.g., CPU, disk bandwidth) to speed up
recovery process [126], [259]. Specifically, when receiving
an update request from a client, the master server appends
the new object to the in-memory log, and then forwards the
object to R (usually R = 3) remote backup servers, which
buffer the object in memory first and flush the buffer onto
disk in a batch (i.e., in unit of segment). The backup servers
respond as soon as the object has been copied into the
buffer, thus the response time is dominated by the network
latency rather than the disk I/O.

To make recovery faster, replicas of the data are scattered
across all the backup servers in the cluster in unit of segment,
thus making more backup servers collaborate for the recov-
ery process. Each master server decides independently
where to place a segment replica using a combination of
randomization and refinement, which not only eliminates
pathological behaviors but also achieves a nearly optimal
solution. Furthermore, after a server fails, in addition to all
the related backup servers, multiple master servers are
involved to share the recovery job (i.e., re-constructing the
in-memory log and hash table), and take responsibility for
ensuring an even partitioning of the recovered data. The
assignment of recovery job is determined by a will made by
the master before it crashes. The will is computed based on
tablet profiles, each of which maintains a histogram to track
the distribution of resource usage (e.g., the number of
records and space consumption) within a single table/tab-
let. The will aims to balance the partitions of a recovery job
such that they require roughly equal time to recover.

The random replication strategy produces almost uniform
allocation of replicas and takes advantage of the large scale,
thus preventing data loss and minimizing recovery time.
However, this strategymay result in data loss under simulta-
neous node failures [125]. Although the amount of lost data
may be small due to the high dispersability of segment repli-
cas, it is possible that all replicas of certain part of the data
may become unavailable. Hence RAMCloud also supports
another replication mode based on Copyset [125], [258], [259],
to reduce the probability of data loss after large, coordinated
failures such as power loss. Copyset trades off the amount of
lost data for the reduction in the frequency of data loss, by
constraining the set of backup servers where all the segments
in a master server can be replicated to. However, this can
lead to longer recovery time as there are fewer backup serv-
ers for reading the replicas from disks. The trade-off can be
controlled by the scatter width, which is the number of
backup servers that each server’s data are allowed to be repli-
cated to. For example, if the scatter width equals the number
of all the other servers (except the server that wants to repli-
cate) in the cluster, Copyset then turns to random replication.

3.2.4 Redis

Redis [66] is an in-memory key-value store implemented
in C with support for a set of complex data structures,
including hash, list, set, sorted set, and some advanced

1934 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

functions such as publish/subscribe messaging, scripting
and transactions. It also embeds two persistence mecha-
nisms—snapshotting and append-only logging. Snap-
shotting will back up all the current data in memory
onto disk periodically, which facilitates recovery process,
while append-only logging will log every update opera-
tion, which guarantees more availability. Redis is single-
threaded, but it processes requests asynchronously by
utilizing an event notification strategy to overlap the net-
work I/O communication and data storage/retrieval
computation.

Redis also maintains a hash-table to structure all the
key-value objects, but it uses naive memory allocation
(e.g., malloc/free), rather than slab-based memory alloca-
tion strategy (i.e., Memcached’s), thus making it not very
suitable as an LRU cache, because it may incur heavy
memory fragmentation. This problem is partially allevi-
ated by adopting the jemalloc [262] memory allocator in
the later versions.

Scripting. Redis features the server-side scripting func-
tionality (i.e., Lua scripting), which allows applications to
perform user-defined functions inside the server, thus
avoiding multiple round-trips for a sequence of dependent
operations. However, there is an inevitable costly overhead
in the communication between the scripting engine and the
main storage component. Moreover, a long-running script
can degenerate the overall performance of the server as
Redis is single-threaded and the long-running script can
block all other requests.

Distributed Redis. The first version of distributed Redis is
implemented via data sharding on the client-side. Recently,
the Redis group introduces a new version of distributed
Redis called Redis Cluster, which is an autonomous distrib-
uted data store with support for automatic data sharding,
master-slave fault-tolerance and online cluster re-organiza-
tion (e.g., adding/deleting a node, re-sharding the data).
Redis Cluster is fully distributed, without a centralized mas-
ter to monitor the cluster and maintain the metadata. Basi-
cally, a Redis Cluster consists of a set of Redis servers, each
of which is aware of the others. That is, each Redis server
keeps all the metadata information (e.g., partitioning config-
uration, aliveness status of other nodes) and uses gossip
protocol to propagate updates.

Redis Cluster uses a hash slot partition strategy to
assign a subset of the total hash slots to each server node.
Thus each node is responsible for the key-value objects
whose hash code is within its assigned slot subset. A
client is free to send requests to any server node, but it
will get redirection response containing the address of an
appropriate server when that particular node cannot
answer the request locally. In this case, a single request
needs two round-trips. This can be avoided if the client
can cache the map between hash slots and server nodes.
The current version of Redis Cluster requires manual re-
sharding of the data and allocating of slots to a newly-
added node. The availability is guaranteed by accompa-
nying a master Redis server with several slave servers
which replicate all the data of the master, and it uses
asynchronous replication in order to gain good perfor-
mance, which, however, may introduce inconsistency
among primary copy and replicas.

3.2.5 In-Memory Graph Databases

Bitsy. Bitsy [254] is an embeddable in-memory graph data-
base that implements the Blueprints API, with ACID guaran-
tees on transactions based on the optimistic concurrency
model. Bitsy maintains a copy of the entire graph in mem-
ory, but logs every change to the disk during a commit
operation, thus enabling recovery from failures. Bitsy is
designed to work in multi-threaded OLTP environments.
Specifically, it uses multi-level dual-buffer/log to improve
the write transaction performance and facilitate log clean-
ing, and lock-free reading with sequential locks to amelio-
rate the read performance. Basically, it has three main
design principles:

� No seek. Bitsy appends all changes to an unordered
transaction log, and depends on re-organization pro-
cess to clean the obsolete vertices and edges.

� No socket. Bitsy acts as an embedded database, which
is to be integrated into an application (java-based).
Thus the application can access the data directly,
without the need to transfer through socket-based
interface which results in a lot of system calls and
serialization/de-serialization overhead.

� No SQL. Bitsy implements the Blueprints API, which
is oriented for the property graph model, instead of
the relational model with SQL.

Trinity. Trinity is an in-memory distributed graph data-
base and computation platform for graph analytics [46],
[263], whose graph model is built based on an in-memory
key-value store. Specifically, each graph node corresponds to
a Trinity cell, which is an (id, blob) pair, where id represents a
node in the graph, and the blob is the adjacent list of the node
in serialized binary format, instead of runtime object format,
in order to minimize memory overhead and facilitate check-
pointing process. However this introduces serialization/de-
serialization overhead in the analytics computation. A large
cell, i.e., a graph node with a large number of neighbors, is
represented as a set of small cells, each of which contains
only the local edge information, and a central cell that con-
tains cell ids for the dispersed cells. Besides, the edge can be
tagged with a label (e.g., a predicate) such that it can
be extended to an RDF store [263], with both local predicate
indexing and global predicate indexing support. In local
predicate indexing, the adjacency list for each node is sorted
first by predicates and then by neighboring nodes id, such as
SPO11 or OPS index in traditional RDF store, while the global
predicate index enables the locating of cells with a specific
predicate as traditional PSO or POS index.

3.3 In-Memory Cache Systems

Cache plays an important role in enhancing system perfor-
mance, especially in web applications. Facebook, Twitter,
Wikipedia, LiveJournal, et al. are all taking advantage of cache
extensively to provide good service. Cache can provide two
optimizations for applications: optimization for disk I/O by
allowing to access data from memory, and optimization for
CPU workload by keeping results without the need for re-
computation. Many cache systems have been developed for

11. S stands for subject, P for predicate, and O for object.

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1935

various objectives. There are general cache systems such as
Memcached [61] and BigTable Cache [248], systems targeting
speeding up analytics jobs such as PACMan [264] and Grid-
Gain [51], and more purpose specific systems that have been
designed for supporting specific frameworks such as NCache
[265] for .NET and Velocity/AppFabric [266] for Windows
servers, systems supporting strict transactional semantics
such as TxCache [267], and network caching such as HashC-
ache [268].

Nonetheless, cache systems were mainly designed for
web applications, as Web 2.0 increases both the complexity
of computation and strictness of service-level agreement
(SLA). Full-page caching [269], [270], [271] was adopted in
the early days, while it becomes appealing to use fine-
grained object-level data caching [61], [272] for flexibility. In
this section, we will introduce some representative cache
systems/libraries and their main techniques in terms of in-
memory data management.

3.3.1 Memcached

Memcached [61] is a light-weight in-memory key-value
object caching system with strict LRU eviction. Its distrib-
uted version is achieved via the client-side library. Thus, it
is the client libraries that manage the data partitioning (usu-
ally hash-based partitioning) and request routing. Memc-
ached has different versions of client libraries for various
languages such as C/C++, PHP, Java, Python, etc. In addi-
tion, it provides two main protocols, namely text protocol
and binary protocol, and supports both UDP and TCP
connections.

Data organization. Memcached uses a big hash-table to
index all the key-value objects, where the key is a text string
and the value is an opaque byte block. In particular, the
memory space is broken up into slabs of 1 MB, each of
which is assigned to a slab class. And slabs do not get re-
assigned to another class. The slab is further cut into chunks
of a specific size. Each slab class has its own chunk size
specification and eviction mechanism (i.e., LRU). Key-value
objects are stored in the corresponding slabs based on their
sizes. The slab-based memory allocation is illustrated in
Fig. 7, where the grow factor indicates the chunk size
difference ratio between adjacent slab classes. The slab
design helps prevent memory fragmentation and optimize
memory usage, but also causes slab calcification problems.
For example, it may incur unnecessary evictions in scenar-
ios where Memcached tries to insert a 500 KB object when it
runs out of 512 KB slabs but has lots of 2 MB slabs. In this
case, a 512 KB object will be evicted although there is still a
lot of free space. This problem is alleviated in the optimized
versions of Facebook and Twitter [273], [274].

Concurrency. Memcached uses libevent library to achieve
asynchronous request processing. In addition, Memcached
is a multi-threaded program, with fine-grained pthread
mutex lock mechanism. A static item lock hash-table is used
to control the concurrency of memory accesses. The size of
the lock hash-table is determined based on the configured
number of threads. And there is a trade-off between the
memory usage for the lock hash-table and the degree of par-
allelism. Even though Memcached provides such a fine-
grained locking mechanism, most of operations such as

index lookup/update and cache eviction/update still need
global locks [63], which prevents current Memcached from
scaling up on multi-core CPUs [275].

Memcached in Production—Facebook’s Memcache [273]
and Twitter’s Twemcache [274]. Facebook scales Memcached
at three different deployment levels (i.e., cluster, region and
across regions) from the engineering point of view, by
focusing on its specific workload (i.e., read-heavy) and trad-
ing off among performance, availability and consistency
[273]. Memcache improves the performance of Memcached
by designing fine-grained locking mechanism, adaptive
slab allocator and a hybrid of lazy and proactive eviction
schemes. Besides, Memcache focuses more on the deploy-
ment-level optimization. In order to reduce the latency of
requests, it adopts parallel requests/batching, uses connec-
tion-less UDP for get requests and incorporates flow-control
mechanisms to limit incast congestion. It also utilizes techni-
ques such as leases [276] and stale reads [277] to achieve
high hit rate, and provisioned pools to balance load and
handle failures.

Twitter adopts similar optimizations on its distributed
version of Memcached, called Twemcache. It alleviates
Memcached’s slab allocation problem (i.e., slab calcification
problem) by random eviction of a whole slab and re-assign-
ment of a desired slab class, when there is not enough space.
It also enables a lock-less stat collection via the updater-
aggregator model, which is also adopted by Facebook’s
Memcache. In addition, Twitter also provides a proxy for
the Memcached protocol, which can be used to reduce
the TCP connections in a huge deployment of Memcached
servers.

3.3.2 MemC3

MemC3 [63] optimizes Memcached in terms of both perfor-
mance and memory efficiency by using optimistic concur-
rent cuckoo hashing and LRU-approximating eviction
algorithm based upon CLOCK [279], with the assumption
that small and read-only requests dominate in real-world
workloads. MemC3 mostly facilitates read-intensive work-
loads, as the write operations are still serialized in MemC3
and cuckoo hashing favors read over write operation. In
addition, applications involving a large number of small
objects should benefit more from MemC3 in memory effi-
ciency because MemC3 eliminates a lot of pointer overhead
embedded in the key-value object. CLOCK-based eviction
algorithm takes less memory than list-based strict LRU, and
makes it possible to achieve high concurrency as it needs no
global synchronization to update LRU.

Optimistic Concurrent Cuckoo Hashing. The basic idea of
cuckoo hashing [278] is to use two hash functions to provide
each key two possible buckets in the hash table. When a
new key is inserted, it is inserted into one of its two possible
buckets. If both buckets are occupied, it will randomly

Fig. 7. Slab-based allocation.

1936 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

displace the key that already resides in one of these two
buckets. The displaced key is then inserted into its alterna-
tive bucket, which may further trigger a displacement, until
a vacant slot is found or until a maximum number of dis-
placements is reached (at this point, the hash table is rebuilt
using new hash functions). This sequence of displacements
forms a cuckoo displacement path. The collision resolution
strategy of cuckoo hashing can achieve a high load factor. In
addition, it eliminates the pointer field embedded in each
key-value object in the chaining-based hashing used by
Memcached, which further ameliorates the memory effi-
ciency of MemC3, especially for small objects.

MemC3 optimizes the conventional cuckoo hashing by
allowing each bucket with four tagged slots (i.e., four-way
set-associative), and separating the discovery of a valid
cuckoo displacement path from the execution of the path for
high concurrency. The tag in the slot is used to filter the
unmatched requests and help to calculate the alternative
bucket in the displacement process. This is done without
the need for the access to the exact key (thus no extra
pointer de-reference), which makes both look-up and insert
operations cache-friendly. By first searching for the cuckoo
displacement path and then moving keys that need to be
displaced backwards along the cuckoo displacement path, it
facilitates fine-grained optimistic locking mechanism.
MemC3 uses lock striping techniques to balance the granu-
larity of locking, and optimistic locking to achieve multiple-
reader/single-writer concurrency.

3.3.3 TxCache

TxCache [267] is a snapshot-based transactional cache used
to manage the cached results of queries to a transactional
database. TxCache ensures that transactions see only consis-
tent snapshots from both the cache and the database, and it
also provides a simple programming model where applica-
tions simply designate functions/queries as cacheable and
the TxCache library handles the caching/invalidating of
results.

TxCache uses versioning to guarantee consistency. In
particular, each object in the cache and the database is
tagged with a version, described by its validity interval,
which is a range of timestamps at which the object is valid.
A transaction can have a staleness condition to indicate that
the transaction can tolerate a consistent snapshot within the
past staleness seconds. Thus only records that overlap with
the transaction’s tolerance range (i.e., the range between its
timestamp minus staleness and its timestamp) should be
considered in the transaction execution. To increase the
cache hit rate, the timestamp of a transaction is chosen lazily
by maintaining a set of satisfying timestamps and revising it
while querying the cache. In this way, the probability of
getting more requested records from the cache increases.
Moreover, it still keeps the multi-version consistency at the
same time. The cached results are automatically invalidated
whenever their dependent records are updated. This is
achieved by associating each object in the cache with an
invalidation tag, which describes which parts of the data-
base it depends on. When some records in the database are
modified, the database identifies the set of invalidation tags
affected and passes these tags to the cache nodes.

4 IN-MEMORY DATA PROCESSING SYSTEMS

In-memory data processing/analytics is becoming more
and more important in the Big Data era as it is necessary to
analyze a large amount of data in a small amount of time. In
general, there are two types of in-memory processing sys-
tems: data analytics systems which focus on batch process-
ing such as Spark [55], Piccolo [59], SINGA [280], Pregel
[281], GraphLab [47], Mammoth [56], Phoenix [57], Grid-
Gain [51], and real-time data processing systems (i.e.,
stream processing) such as Storm [53], Yahoo! S4 [52], Spark
Streaming [54], MapReduce Online [282]. In this section, we
will review both types of in-memory data processing sys-
tems, but mainly focus on those designed for supporting
data analytics.

4.1 In-Memory Big Data Analytics Systems

4.1.1 Main Memory MapReduce (M3R)

M3R [58] is a main memory implementation of MapReduce
framework. It is designed for interactive analytics with tera-
bytes of data which can be held in the memory of a small
cluster of nodes with high mean time to failure. It provides
a backward compatible interfaces with conventional Map-
Reduce [283], and significantly better performance. How-
ever, it does not guarantee resilience because it caches the
results in memory after map/reduce phase instead of flush-
ing into the local disk or HDFS, making M3R not suitable
for long-running jobs. Specifically, M3R optimizes the con-
ventional MapReduce design in two aspects as follows:

� It caches the input/output data in an in-memory
key-value store, such that the subsequent jobs can
obtain the data directly from the cache and the mate-
rialization of output results is eliminated. Basically,
the key-value store uses a path as a key, and maps
the path to a metadata location where it contains the
locations for the data blocks.

� It guarantees partition stability to achieve locality by
specifying a partitioner to control how keys are
mapped to partitions amongst reducers, thus allow-
ing an iterative job to re-use the cached data.

4.1.2 Piccolo

Piccolo [59] is an in-memory data-centric programming
framework for running data analytics computation across
multiple nodes with support for data locality specification
and data-oriented accumulation. Basically, the analytics pro-
gram consists of a control function which is executed on the
master, and a kernel function which is launched as multiple
instances concurrently executing onmanyworker nodes and
sharing distributed mutable key-value tables, which can be
updated on the fine-grained key-value object level. Specifi-
cally, Piccolo supports the following functionalities:

� A user-defined accumulation function (e.g., max,
summation) can be associated with each table, and
Piccolo executes the accumulation function during
runtime to combine concurrent updates on the
same key.

� To achieve data locality during the distributed com-
putation, users are allowed to define a partition

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1937

function for a table and co-locate a kernel execution
with some table partition or co-locate partitions from
different tables.

� Piccolo handles machine failures via a global user-
assisted checkpoint/restore mechanism, by explic-
itly specifying when and what to checkpoint in the
control function.

� Load-balance during computation is optimized via
work stealing, i.e., a worker that has finished all its
assigned tasks is instructed to steal a not-yet-started
task from the worker with the most remaining tasks.

4.1.3 Spark/RDD

Spark system [55], [284] presents a data abstraction for big
data analytics, called resilient distributed dataset (RDD),
which is a coarse-grained deterministic immutable data
structure with lineage-based fault-tolerance [285], [286]. On
top of Spark, Spark SQL, Spark Streaming, MLlib and
GraphX are built for SQL-based manipulation, stream proc-
essing, machine learning and graph processing, respec-
tively. It has two main features:

� It uses an elastic persistence model to provide the
flexibility to persist the dataset in memory, on disks
or both. By persisting the dataset in memory, it
favors applications that need to read the dataset mul-
tiple times (e.g., iterative algorithms), and enables
interactive queries.

� It incorporates a light-weight fault-tolerance mecha-
nism (i.e., lineage), without the need for check-
pointing. The lineage of an RDD contains sufficient
information such that it can be re-computed based
on its lineage and dependent RDDs, which are the
input data files in HDFS in the worst case. This idea
is also adopted by Tachyon [287], which is a distrib-
uted file system enabling reliable file sharing via
memory.

The ability of persisting data in memory in a fault-toler-
ance manner makes RDD suitable for many data analytics
applications, especially those iterative jobs, since it removes
the heavy cost of shuffling data onto disks at every stage as
Hadoop does. We elaborate on the following two aspects of
RDD: data model and job scheduling.

Data model. RDD provides an abstraction for a read-only
distributed dataset. Data modification is achieved by
coarse-grained RDD transformations that apply the same
operation to all the data items in the RDD, thus generating a
new RDD. This abstraction offers opportunities for high
consistency and a light-weight fault-tolerance scheme. Spe-
cifically, an RDD logs the transformations it depends on
(i.e., its lineage), without data replication or checkpointing
for fault-tolerance. When a partition of the RDD is lost, it is
re-computed from other RDDs based on its lineage. As
RDD is updated by coarse-grained transformations, it usu-
ally requires much less space and effort to back up the line-
age information than the traditional data replication or
checkpointing schemes, at the price of a higher re-computa-
tion cost for computation-intensive jobs, when there is a fail-
ure. Thus, for RDDs with long lineage graphs involving a
large re-computation cost, checkpointing is used, which is
more beneficial.

The RDD model provides a good caching strategy for
“working sets” during computation, but it is not general
enough to support traditional data storage functionality for
two reasons:

� RDD fault-tolerance scheme is based on the assump-
tion of coarse-grained data manipulation without in-
place modification, because it has to guarantee that
the program size is much less than the data size.
Thus, fine-grained data operations such as updating
a single key-value object cannot be supported in this
model.

� It assumes that there exists an original dataset persis-
tent on a stable storage, which guarantees the cor-
rectness of the fault-tolerance model and the
suitability of the block-based organization model.
However, in traditional data storage, data is arriving
dynamically and the allocation of data cannot be
determined beforehand. As a consequence, data
objects are dispersed in memory, which results in
degraded memory throughput.

Job scheduling. The jobs in Spark are organized into a
DAG, which captures job dependencies. RDD uses lazy
materialization, i.e., an RDD is not computed unless it is
used in an action (e.g., count()). When an action is executed
on an RDD, the scheduler examines the RDD’s lineage to
build a DAG of jobs for execution. Spark uses a two-phase
job scheduling as illustrated in Fig. 8 [55]:

� It first organizes the jobs into a DAG of stages, each
of which may contain a sequence of jobs with only
one-to-one dependency on the partition-level. For
example, in Fig. 8, Stage 1 consists of two jobs, i.e.,
map and filter, both of which only have one-to-one
dependencies. The boundaries of the stages are the
operations with shuffle (e.g., reduce operation in
Fig. 8), which have many-to-many dependencies.

� In each stage, a task is formed by a sequence of jobs
on a partition, such as the map and filter jobs on the
shaded partitions in Fig. 8. Task is the unit of sched-
uling in the system, which eliminates the materiali-
zation of the intermediate states (e.g., the middle
RDD of Stage 1 in Fig. 8), and enables a fine-grained
scheduling strategy.

4.2 In-Memory Real-Time Processing Systems

4.2.1 Spark Streaming

Spark Streaming [54] is a fault-tolerant stream processing
system built based on Spark [55]. It structures a streaming

Fig. 8. Spark job scheduler.

1938 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

computation as a series of stateless, deterministic batch
computations on small time intervals (say 1 s), instead of
keeping continuous, stateful operators. Thus it targets appli-
cations that tolerate latency of several seconds. Spark
Streaming fully utilizes the immutability of RDD and line-
age-based fault-tolerance mechanism from Spark, with
some extensions and optimizations. Specifically, the incom-
ing stream is divided into a sequence of immutable RDDs
based on time intervals, called D-streams, which are the
basic units that can be acted on by deterministic transforma-
tions, including not only many of the transformations avail-
able on normal Spark RDDs (e.g., map, reduce and
groupBy), but also windowed computations exclusive for
Spark Streaming (e.g., reduceByWindow and countBy-
Window). RDDs from historical intervals can be automati-
cally merged with the newly-generated RDD as new
streams arrive. Stream data is replicated across two worker
nodes to guarantee durability of the original data that the
lineage-based recovery relies on, and checkpointing is con-
ducted periodically to reduce the recovery time due to long
lineage graphs. The determinism and partition-level lineage
of D-streams makes it possible to perform parallel recovery
after a node fails and mitigate straggler problem by specula-
tive execution.

4.2.2 Yahoo! S4

S4 (Simple Scalable Streaming System) [52] is a fully
decentralized, distributed stream processing engine
inspired by the MapReduce [283] and Actors model [99].
Basically, computation is performed by processing ele-
ments (PEs) which are distributed across the cluster, and
messages are transmitted among them in the form of data
events, which are routed to corresponding PEs based on
their identities. In particular, an event is identified by its
type and key, while a PE is defined by its functionality
and the events that it intends to consume. The incoming
stream data is first transformed as a stream of events,
which will then be processed by a series of PEs that are
defined by users for specific applications. However, S4
does not provide data fault-tolerance by design, since
even though automatic PE failover to standby nodes is
supported, the states of the failed PEs and messages are
lost during the handoff if there is no user-defined state/
message backup function inside the PEs.

5 QUALITATIVE COMPARISON

In this section, we summarize some representative in-mem-
ory data management systems elaborated in this paper in
terms of data model, supported workloads, indexes, concur-
rency control, fault-tolerance, memory overflow control,
and query processing strategy in Table 3.

In general, in-memory data management systems can
also be classified into three categories based on their func-
tionality such as storage and data analytics, namely storage
systems, analytics systems, and full-fledged systems that
have both capabilities:

� In-memory storage systems have been designed
purely for efficient storage service, such as in-
memory relational databases only for OLTP (e.g.,

H-Store12 [36], Silo [39], Microsoft Hekaton [37]),
NoSQL databases without analytics support (e.g.,
RAMCloud [75], Masstree [249], MICA [64], Mercury
[250], Kyoto/Tokyo Cabinet [251], Bitsy [254]), cache
systems (e.g., Memcached [61], MemC3 [63],
TxCache [267], HashCache [268]), etc. Storage service
focuses more on low latency and high throughput
for short-running query jobs, and is equipped with a
light-weight framework for online queries. It usually
acts as the underlying layer for upper-layer applica-
tions (e.g., web server, ERP), where fast response is
part of the service level agreement.

� In-memory analytics systems are designed for
large scale data processing and analytics, such as
in-memory big data analytics systems (e.g., Spark/
RDD [55], Piccolo [59], Pregel [281], GraphLab
[47], Mammoth [56], Phoenix [57]), and real-time
in-memory processing systems (e.g., Storm [53],
Yahoo! S4 [52], Spark Streaming [54], MapReduce
Online [282]). The main optimization objective of
these systems is to minimize the runtime of an
analytics job, by achieving high parallelism (e.g.,
multi-core, distribution, SIMD, and pipelining)
and batch processing.

� In-memory full-fledged systems include not only
in-memory relational databases with support for
both OLTP and OLAP (e.g., HyPer [35], Crescando
[227], HYRISE [176]), but also data stores with gen-
eral purpose query language support (e.g., SAP
HANA [77], Redis [66], MemepiC [60], [138], Cit-
rusleaf/Aerospike [34], GridGain [51], MongoDB
[65], Couchbase [253], MonetDB [256], Trinity
[46]). One major challenge for this category of
systems is to make a reasonable tradeoff between
two different workloads, by making use of appro-
priate data structures and organization, resource
contention, etc.; concurrency control is also very
important as it deals with simultaneous mixed
workloads.

6 RESEARCH OPPORTUNITIES

In this section, we briefly discuss the research challenges
and opportunities for in-memory data management, in the
following optimization aspects, which have been intro-
duced earlier in Table 1:

� Indexing. Existing works on indexing for in-memory
databases attempt to optimize both time and space
efficiency. Hash-based index is simple and easy to
implement, and also offers O(1) access time complex-
ity, while tree-based index supports range query nat-
urally and usually has good space efficiency. Trie-
based index has bounded O(k) time complexity,
where k is the length of the key. There are also other
kinds of indexes such as bitmaps and skip-lists,
which are amenable to efficient in-memory and dis-
tributed processing. For example, the skip-list, which

12. Based on the H-Store website, it now incorporates a new experi-
mental OLAP engine based on JVM snapshot. Based on its main focus,
we put it in the storage category.

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1939

allows fast point- and range-queries of an ordered
sequence of elements with O(log n) complexity, is
becoming a desirable alternative to B-trees for in-
memory databases, since it can be implemented
latch-free easily as a result of its layered structures.
Indexes for in-memory databases are different from
those for disk-based databases, which focus on I/O
efficiency rather than memory and cache utilization.
It would be very useful to design an index with
constant time complexity for point accesses achieved
by hash- and trie-based indexes, efficient support for
range accesses achieved by tree- and trie-based
indexes, and good space efficiency achieved by
hash- and tree-based indexes (like ART index [87]).
Lock-free or lock-less index structures are essential
to achieve high parallelism without latch-related bot-
tleneck, and index-less design or lossy index is also
interesting because of its high throughput and low
latency of DRAM [41], [64].

� Data layouts. The data layout or data organization
is essential to the performance of an in-memory sys-
tem as a whole. Cache-conscious design such as
columnar structure, cache-line alignment, and space
utilization optimization such as compression, data

de-fragmentation are the main focuses in the in-
memory data organization. The idea of continuous
data allocation as log structure has been introduced
in main memory systems to eliminate the data
fragmentation problem and simplify concurrency
control [2]. But it may be better to design an appli-
cation-independent data allocator with common
built-in functionality for in-memory systems such
as fault-tolerance, and application-assisted data
compression and de-fragmentation.

� Parallelism. Three levels of parallelism should be
exploited in order to speed up the processing, which
have been detailed in Section 1. It is usually benefi-
cial to increase parallelism at the instruction level
(e.g., bit-level parallelism, SIMD) provided in mod-
ern architecture, which can achieve nearly optimal
speedup, free from concurrency issues and other
overhead incurred, but with constraints on the maxi-
mum parallelism allowed and data structures to
operate on. The instruction-level parallelism may
yield a good performance boost, and therefore it
should be considered in the design of an efficient in-
memory data management system, especially in the
design of data structures. With the emergence of

TABLE 3
Comparison of In-Memory Data Management Systems

1940 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

many integrated core (MIC) co-processors (e.g., Intel
Xeon Phi), it provides a promising alternative for
parallelizing computation, with wider SIMD instruc-
tions, many lower-frequency in-order cores and
hardware contexts [288].

� Concurrency control/transaction management. For
in-memory systems, the overhead of concurrency
control significantly affects the overall performance,
thus making it perfect if there are no concurrency
control at all. Hence, it is worth making the serial exe-
cution strategy more efficient for cross-partition
transactions and more robust to skewed workloads.
Lock-less or lock-free concurrency control mecha-
nism is promising in in-memory data management
as a heavy-weight lock-based mechanism can greatly
offset the performance improved by the in-memory
environment. Atomic primitives provided in most
mainstream programming languages are efficient
alternatives that can be exploited in designing a lock-
free concurrency control mechanism. Besides, HTM
provides a hardware-assisted approach for efficient
concurrency control protocol, especially under the
transactional semantics in databases. Hardware-
assisted approaches are good choices in the latency-
sensitive in-memory environment, as software solu-
tions usually incur heavy overhead that negates the
benefits brought by parallelism and fast data access.
But we should take care of its unexpected aborts
under certain conditions. A mix of these data protec-
tion mechanisms (i.e., HTM, lock, timestamp, atomic
primitives) should enable a more efficient concur-
rency control model. Moreover, the protocol should
be data-locality sensitive and cache aware, which
matter more for modern machines [192].

� Query processing. Query processing is a widely
studied research topic even in traditional disk-based
databases. However, traditional query processing
framework based on Iterator-/Volcano-style model,
although flexible, is no longer suitable for in-mem-
ory databases because of its poor code/data locality.
The high computing power of modern CPU, and
easy-to-use compiler infrastructure such as LLVM
[167] enable efficient dynamic compiling [112],
which can improve the query processing perfor-
mance significantly as a result of better code and
data locality. SIMD or multi-core boosted processing
can be utilized to speed up complex database opera-
tions such as join and sort, and NUMA architecture
will play a bigger role in the future years.

� Fault tolerance. Fault tolerance is a necessity for an
in-memory database in order to guarantee durabil-
ity; however, it is also a major performance bottle-
neck caused by I/Os. Thus one design philosophy
for fault-tolerance is to make it almost invisible to
normal operations by minimizing the I/O cost in the
critical path as much as possible. Command logging
[131] can reduce the data that needs to be logged,
while remote logging used by RAMCloud [2] and 2-
Safe visible policy of solidDB [40] can reduce the
response time by logging the data in remote nodes
and replying back as soon as the data is written into

the buffer. Fast recovery can provide high availabil-
ity upon failure, which may be achievable at the
price of more and well-organized backuped files
(log/checkpoint). The tradeoff between the interfer-
ence to the normal performance and the recovery
efficiency should be further examined [132]. Hard-
ware/OS-assisted approaches are promising, e.g.,
NVRAM, memory-mapped file, on top of which
optimized algorithms and data structures are req-
uired to exert its performance potential.

� Data overflow. In general, approaches to the data
overflow problem can be classified into three catego-
ries: user-space (e.g., H-Store Anti-caching [133],
Hekaton Siberia [134]), kernel-space (e.g., OS Swap,
MongoDB memory mapped files [65]) and the
hybrid (e.g., Efficient OS Paging [136] and UVMM
[138]). The semantics-aware user-space approaches
can make more effective decision on the paging strat-
egies, while the hardware-conscious and well-devel-
oped kernel-space approaches are able to utilize the
I/O efficiency brought by the OS during swapping.
Potentially, both the semantics-aware paging strat-
egy and hardware-conscious I/O management can
be exploited to boost the performance [136], [138].

In addition to the above, hardware solutions are being
increasingly exploited for performance gain. In particular,
new hardware/architecture solutions such as HTM, NVM,
RDMA, NUMA and SIMD, have been shown to be able to
boost the performance of in-memory database systems signif-
icantly. Energy efficiency is also becoming attractive in the in-
memory systems as DRAMcontributes a relatively significant
portion of the overall power consumption [289], [290], and
distributed computation further exacerbates the problem.
Every operational overhead that is considered negligible in
disk-based systems, may become the new bottleneck in mem-
ory-based systems. Thus the removal of these legacy bottle-
necks such as system calls, network stack, and cross-cache-
line data layout, would contribute to a significant perfor-
mance boost for in-memory systems. Furthermore, as exem-
plified in [117], even the implementation matters a lot in the
overhead-sensitive in-memory environment.

7 CONCLUSIONS

As memory becomes the new disk, in-memory data man-
agement and processing becomes increasingly interesting
for both academia and industry. Shifting the data storage
layer from disks to main memory can lead to more than
100 � theoretical improvement in terms of response time
and throughput. When data access becomes faster, every
source of overhead that does not matter in traditional disk-
based systems, may degrade the overall performance signif-
icantly. The shifting prompts a rethinking of the design of
traditional systems, especially for databases, in the aspect of
data layouts, indexes, parallelism, concurrency control,
query processing, fault-tolerance, etc. Modern CPU utiliza-
tion and memory-hierarchy-conscious optimization play a
significant role in the design of in-memory systems, and
new hardware technologies such as HTM and RDMA pro-
vide a promising opportunity to resolve problems encoun-
tered by software solutions.

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1941

In this survey, we have focused on the design principles
for in-memory data management and processing, and practi-
cal techniques for designing and implementing efficient and
high-performance in-memory systems. We reviewed the
memory hierarchy and some advanced technologies such as
NUMA and transactional memory, which provide the basis
for in-memory datamanagement andprocessing. In addition,
we also discussed some pioneering in-memory NewSQL and
NoSQL databases including cache systems, batch and
online/continuous processing systems.We highlighted some
promising design techniques in detail, from which we can
learn the practical and concrete system design principles.
This survey provides a comprehensive review of important
technology in memory management and analysis of related
works to date, which hopefully will be a useful resource for
furthermemory-oriented system research.

ACKNOWLEDGMENTS

This work was supported by A*STAR project 1321202073.
The authors would like to thank the anonymous reviewers,
and also Bingsheng He, Eric Lo, and Bogdan Marius Tudor
for their insightful comments and suggestions.

REFERENCES

[1] S. Robbins, “RAM is the new disk,” InfoQ News, Jun. 2008.
[2] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,

D. Mazi�eres, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum,
S. M. Rumble, E. Stratmann, and R. Stutsman, “The case for
RAMClouds: Scalable high-performance storage entirely in
dram,” ACM SIGOPS Operating Syst. Rev., vol. 43, pp. 92–105,
2010.

[3] F. Li, B. C. Ooi, M. T. €Ozsu, and S. Wu, “Distributed data man-
agement using MapReduce,” ACM Comput. Surv., vol. 46,
pp. 31:1–31:42, 2014.

[4] HP. (2011). Vertica systems [Online]. Available: http://www.
vertica.com

[5] Hadapt Inc.. (2011). Hadapt: Sql on hadoop [Online]. Available:
http://hadapt.com/

[6] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive: A warehousing solu-
tion over a map-reduce framework,” in Proc. VLDB Endowment,
vol. 2, pp. 1626–1629, 2009.

[7] Apache. (2008). Apache hbase [Online]. Available: http://hbase.
apache.org/

[8] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S.
Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D.
Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C.
Taylor, R. Wang, and D. Woodford, “Spanner: Google’s globally-
distributed database,” in Proc. USENIX Symp. Operating Syst.
Des. Implementation, 2012, pp. 251–264.

[9] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Bor-
kar, Y. Bu, M. J. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, E.
Gabrielova, R. Grover, Z. Heilbron, Y. Kim, C. Li, G. Li, J. M.
Ok, N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen,
and T. Westmann, “Asterixdb: A scalable, open source
BDMS,” in Proc. Very Large Database, pp. 1905–1916, 2014.

[10] MySQL AB. (1995). Mysql: The world’s most popular open
source database [Online]. Available: http://www.mysql.com/

[11] Apache. (2008). Apache cassandra [Online]. Available: http://
cassandra.apache.org/

[12] Oracle. (2013). Oracle database 12c [Online]. Available: https://
www.oracle.com/database/index.html

[13] Neo Technology, “Neo4j - the world’s leading graph database,”
2007. [Online]. Available: http://www.neo4j.org/

[14] Aurelius. (2012). Titan—distributed graph database [Online].
Available: http://thinkaurelius.github.io/titan/

[15] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale
graph computation on just a pc,” in Proc. 10th USENIX Conf.
Operating Syst. Des. Implementation, 2012, pp. 31–46.

[16] Objectivity Inc. (2010). Infinitegraph [Online]. Available: http://
www.objectivity.com/infinitegraph

[17] Apache. (2010). Apache Hama [Online]. Available: https://
hama.apache.org

[18] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O.
Verscheure, H. Koutsopoulos, and C. Moran, “IBM info-
sphere streams for scalable, real-time, intelligent transporta-
tion services,” in Proc. ACM SIGMOD Int. Conf. Manag. Data,
2010, pp. 1093–1104.

[19] S. Hoffman, Apache Flume: Distributed Log Collection for Hadoop.
Birmingham, U.K. Packt Publishing, 2013.

[20] Apache. (2005). Apache hadoop [Online]. Available: http://
hadoop.apache.org/

[21] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica,
“Hyracks: A flexible and extensible foundation for data-intensive
computing,” in Proc. IEEE 27th Int. Conf. Data Eng., 2011, pp.
1151–1162.

[22] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building
blocks,” in Proc. 2nd ACM SIGOPS/EuroSys Eur. Conf. Comput.
Syst., 2007, pp. 59–72.

[23] D. Jiang, G. Chen, B. C. Ooi, K.-L. Tan, and S. Wu, “epiC: An
extensible and scalable system for processing big data,” in Proc.
VLDB Endowment, vol. 7, pp. 541–552, 2014.

[24] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi, “LogBase:
A scalable log-structured database system in the cloud,” in Proc.
VLDB Endowment, vol. 5, pp. 1004–1015, 2012.

[25] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo: Amazon’s highly available key-value store,”
ACM SIGOPS Operating Syst. Rev., vol. 41, pp. 205–220, 2007.

[26] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file sys-
tem,” in Proc. 19th ACM Symp. Operating Syst. Principles, 2003,
pp. 29–43.

[27] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage
Syst. Technol., 2010, pp. 1–10.

[28] Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, H. T. Vo, S.
Wu, and Q. Xu, “ES2: A cloud data storage system for supporting
both OLTP and OLAP,” in Proc. IEEE 27th Int. Conf. Data Eng.,
2011, pp. 291–302.

[29] FoundationDB. (2013). Foundationdb[Online]. Available:
https://foundationdb.com

[30] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L.
Tan, and V. Vasudevan, “Fawn: A fast array of wimpy nodes,”
in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Principles, 2009,
pp. 1–14.

[31] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “Silt: A mem-
ory-efficient, high-performance key-value store,” in Proc. 23rd
ACM Symp. Operating Syst. Principles, 2011, pp. 1–13.

[32] B. Debnath, S. Sengupta, and J. Li, “Skimpystash: Ram space
skimpy key-value store on flash-based storage,” in Proc. ACM
SIGMOD Int. Conf. Manag. Data, 2011, pp. 25–36.

[33] Clustrix Inc. (2006). Clustrix [Online]. Available: http://www.
clustrix.com/

[34] V. Srinivasan and B. Bulkowski, “Citrusleaf: A real-time
NoSQL DB which preserves acid,” in Proc. Int. Conf. Very Large
Data Bases, 2011, vol. 4, pp. 1340–1350.

[35] A. Kemper and T. Neumann, “HyPer: A hybrid OLTP &
OLAP main memory database system based on virtual mem-
ory snapshots,” in IEEE 27th Int. Conf. Data Eng., 2011,
pp. 195–206.

[36] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg,
and D. J. Abadi, “H-store: A high-performance, distributed main
memory transaction processing system,” Proc. VLDB Endowment,
vol. 1, pp. 1496–1499, 2008.

[37] C. Diaconu, C. Freedman, E. Ismert, P.-A
�
. Larson, P. Mittal, R.

Stonecipher, N. Verma, and M. Zwilling, “Hekaton: SQL server’s
memory-optimized OLTP engine,” in Proc. ACM SIGMOD Int.
Conf. Manag. Data, 2013, pp. 1243–1254.

[38] T. Lahiri, M.-A. Neimat, and S. Folkman, “Oracle timesten: An
in-memory database for enterprise applications,” IEEE Data Eng.
Bull., vol. 36, no. 2, pp. 6–13, Jun. 2013.

[39] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” in Proc. ACM
Symp. Operating Syst. Principles, 2013, pp. 18–32.

1942 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

[40] J. Lindstr€om, V. Raatikka, J. Ruuth, P. Soini, and K. Vakkila,
“IBM solidDB: In-memory database optimized for extreme speed
and availability,” IEEE Data Eng. Bull., vol. 36, no. 2, pp. 14–20,
Jun. 2013.

[41] H. Plattner, “A common database approach for OLTP and olap
USING an in-memory column database,” in Proc. ACM SIGMOD
Int. Conf. Manag. Data, 2009, pp. 1–2.

[42] MemSQL Inc. (2012). Memsql [Online]. Available: http://www.
memsql.com/

[43] B. Brynko, “Nuodb: Reinventing the database,” Inf. Today,
vol. 29, no. 9, p. 9, 2012.

[44] C. Avery, “Giraph: Large-scale graph processing infrastruction
on hadoop,” [Online]. Available: http://giraph.apache.org/,
2011.

[45] S. Salihoglu and J. Widom, “GPS: A graph processing system,”
in Proc. 25th Int. Conf. Sci. Statistical Database Manag., 2013,
pp. 22:1–22:12.

[46] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine
on a memory cloud,” in Proc. ACM SIGMOD Int. Conf. Manag.
Data, 2013, pp. 505–516.

[47] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed GraphLab: A framework for machine
learning and data mining in the cloud,” Proc. VLDB Endowment,
vol. 5, pp. 716–727, 2012.

[48] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica,
“Graphx: A resilient distributed graph system on spark,” in
Proc. 1st Int. Workshop Graph Data Manag. Experiences Syst.,
2013, pp. 2:1–2:6.

[49] Y. Shen, G. Chen, H. V. Jagadish, W. Lu, B. C. Ooi, and B. M.
Tudor, “Fast failure recovery in distributed graph processing
systems,” in Proc. VLDB Endowment, vol. 8, pp. 437–448, 2014.

[50] WhiteDB Team. (2013). Whitedb [Online]. Available: http://
whitedb.org/

[51] GridGain Team. (2007). Gridgain: In-memory computing plat-
form [Online]. Available: http://gridgain.com/

[52] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distrib-
uted stream computing platform,” in Proc. IEEE Int. Conf. Data
Mining Workshops, 2010, pp. 170–177.

[53] BackType and Twitter. (2011). Storm: Distributed and fault-toler-
ant realtime computation [Online]. Available: https://storm.
incubator.apache.org/

[54] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at
scale,” in Proc. 24th ACM Symp. Operating Syst. Principles, 2013,
pp. 423–438.

[55] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCau-
ley, M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proc. 9th USENIX Conf. Netw. Syst. Des. Implemen-
tation, 2012, p. 2.

[56] X. Shi, M. Chen, L. He, X. Xie, L. Lu, H. Jin, Y. Chen, and S.
Wu, “Mammoth: Gearing hadoop towards memory-intensive
mapreduce applications,” IEEE Trans. Parallel Distrib. Syst.,
vol. 99, no. preprints, p.1, 2014.

[57] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth:
Scalable mapreduce on a large-scale shared-memory system,”
in Proc. IEEE Int. Symp. Workload Characterization, 2009,
pp. 198–207.

[58] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta, “M3R:
Increased performance for in-memory hadoop jobs,” Proc. VLDB
Endowment, vol. 5, pp. 1736–1747, 2012.

[59] R. Power and J. Li, “Piccolo: Building fast, distributed programs
with partitioned tables,” in Proc. 9th USENIX Conf. Operating
Syst. Des. Implementation, 2010, pp. 1–14.

[60] Q. Cai, H. Zhang, G. Chen, B. C. Ooi, and K.-L. Tan, “Memepic:
Towards a database system architecture without system calls,”
NUS, 2014.

[61] B. Fitzpatrick and A. Vorobey. (2003). Memcached: A distributed
memory object caching system [Online]. Available: http://
memcached.org/

[62] A. Dragojevi�c, D. Narayanan, O. Hodson, and M. Castro, “FaRM:
Fast remote memory,” in Proc. 11th USENIX Conf. Netw. Syst.
Des. Implementation, 2014, pp. 401–414.

[63] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact
and concurrent MemCache with dumber caching and smarter
hashing,” in Proc. 10th USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2013, pp. 371–384.

[64] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A
holistic approach to fast in-memory key-value storage,” in Proc.
11th USENIX Conf. Netw. Syst. Des. Implementation, 2014,
pp. 429–444.

[65] MongoDB Inc. (2009). Mongodb [Online]. Available: http://
www.mongodb.org/

[66] S. Sanfilippo and P. Noordhuis. (2009). Redis [Online]. Available:
http://redis.io

[67] S. J. Kazemitabar, U. Demiryurek, M. Ali, A. Akdogan, and
C. Shahabi, “Geospatial stream query processing using microsoft
sql server streaminsight,” Proc. VLDB Endowment, vol. 3, pp.
1537–1540, 2010.

[68] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J.
C. Platt, J. F. Terwilliger, and J. Wernsing, “Trill: A high-perfor-
mance incremental query processor for diverse analytics,” Proc.
VLDB Endowment, vol. 8, pp. 401–412, 2014.

[69] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stonebraker,
and D. A. Wood, “Implementation techniques for main memory
database systems,” in Proc. ACM SIGMOD Int. Conf. Manag.
Data, 1984, pp. 1–8.

[70] R. B. Hagmann, “A crash recovery scheme for a memory-
resident database system,” IEEE Trans. Comput., vol. C-35, no. 9,
pp. 839–843, Sep. 1986.

[71] T. J. Lehman and M. J. Carey, “A recovery algorithm for a high-
performance memory-resident database system,” in Proc. ACM
SIGMOD Int. Conf. Manag. Data, 1987, pp. 104–117.

[72] M. H. Eich, “Mars: The design of a main memory database
machine,” in Database Machines and Knowledge Base Machines.
New York, NY, USA: Springer, 1988.

[73] H. Garcia-Molina and K. Salem, “Main memory database sys-
tems: An overview,” IEEE Trans. Knowl. Data Eng., vol. 4, no. 6,
pp. 509–516, Dec. 1992.

[74] V. Sikka, F. F€arber, W. Lehner, S. K. Cha, T. Peh, and C.
Bornh€ovd, “Efficient transaction processing in SAP HANA data-
base: The end of a column store myth,” in Proc. ACM SIGMOD
Int. Conf. Manag. Data, 2012, pp. 731–742.

[75] S. M. Rumble, A. Kejriwal, and J. Ousterhout, “Log-structured
memory for dram-based storage,” in Proc. 12th USENIX Conf.
File Storage Technol., 2014, pp. 1–16.

[76] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, and Y. M. Teo, “A
performance study of big data on small nodes,” Proc. VLDB
Endowment, vol. 8, pp. 762–773, 2015.

[77] V. Sikka, F. F€arber, A. Goel, and W. Lehner, “SAP HANA: The
evolution from a modern main-memory data platform to an
enterprise application platform,” Proc. VLDB Endowment, vol. 6,
pp. 1184–1185, 2013.

[78] S. Wu, B. C. Ooi, and K.-L. Tan, “Online aggregation,” in
Advanced Query Processing, ser. Intelligent Systems Reference
Library. Springer Berlin Heidelberg, vol. 36, pp. 187–210, 2013.

[79] S. Wu, S. Jiang, B. C. Ooi, and K.-L. Tan, “Distributed online
aggregations,” in Proc. VLDB Endowment, vol. 2, no. 1, 2009,
pp. 443–454.

[80] T. J. Lehman and M. J. Carey, “A study of index structures for
main memory database management systems,” in Proc. Int. Conf.
Very Large Data Bases, 1986, pp. 294–303.

[81] J. Rao and K. A. Ross, “Cache conscious indexing for decision-
support in main memory,” in Proc. Int. Conf. Very Large Data
Bases, 1999, pp. 78–89.

[82] J. Rao and K. A. Ross, “Making b+- trees cache conscious in main
memory,” in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2000,
pp. 475–486.

[83] B. Cui, B. C. Ooi, J. Su, and K.-L. Tan, “Contorting high dimen-
sional data for efficient main memory KNN processing,” in Proc.
ACM SIGMOD Int. Conf. Manag. Data, 2003, pp. 479–490.

[84] B. Cui, B. C. Ooi, J. Su, and K.-L. Tan, “Main memory indexing:
The case for bd-tree,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 7,
pp. 870–874, Jul. 2004.

[85] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kalde-
wey, V. W. Lee, S. A. Brandt, and P. Dubey, “FAST: Fast architec-
ture sensitive tree search on modern CPUs and GPUs,” in Proc.
ACM SIGMOD Int. Conf. Manag. Data, 2010, pp. 339–350.

[86] D. B. Lomet, S. Sengupta, and J. J. Levandoski, “The Bw-Tree:
A B-tree for new hardware platforms,” in Proc. IEEE Int. Conf.
Data Eng., 2013, pp. 302–313.

[87] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree:
ARTful indexing for main-memory databases,” in Proc. IEEE
29th Int. Conf. Data Eng., 2013, pp. 38–49.

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1943

[88] M. Kaufmann and D. Kossmann, “Storing and processing tempo-
ral data in a main memory column store,” Proc. VLDB Endow-
ment, vol. 6, pp. 1444–1449, 2013.

[89] C. Lemke, K.-U. Sattler, F. Faerber, and A. Zeier, “Speeding
up queries in column stores: A case for compression,” in
Proc. 12th Int. Conf. Data Warehousing Knowl. Discovery, 2010,
pp. 117–129.

[90] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores
vs. row-stores: How different are they really?” in Proc. ACM
SIGMOD Int. Conf. Manag. Data, 2008, pp. 967–980.

[91] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis,
“Weaving relations for cache performance,” in Proc. Int. Conf.
Very Large Data Bases, 2001, pp. 169–180.

[92] Y. Li and J. M. Patel, “BitWeaving: Fast scans for main memory
data processing,” in Proc. ACM SIGMOD Int. Conf. Manag. Data,
2013, pp. 289–300.

[93] Z. Feng, E. Lo, B. Kao, and W. Xu, “Byteslice: Pushing the
envelop of main memory data processing with a new storage
layout,” in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2015.

[94] Z. Feng and E. Lo, “Accelerating aggregation using intra-cycle
parallelism,” in Proc. IEEE 31th Int. Conf. Data Eng., 2014,
pp. 291–302.

[95] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K.
Chen, A. Baransi, S. Kumar, and P. Dubey, “Efficient implemen-
tation of sorting on multi-core simd cpu architecture,” Proc.
VLDB Endowment, vol. 1, pp. 1313–1324, 2008.

[96] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and
J. Schaffner, “SIMD-scan: Ultra fast in-memory table scan using
on-chip vector processing units,” Proc. VLDB Endowment, vol. 2,
pp. 385–394, 2009.

[97] T. M€uhlbauer, W. R€odiger, R. Seilbeck, A. Reiser, A. Kemper,
and T. Neumann, “Instant loading for main memory databases,”
Proc. VLDB Endowment, vol. 6, pp. 1702–1713, 2013.

[98] C. Balkesen, G. Alonso, J. Teubner, and M. T. €Ozsu, “Multi-core,
main-memory joins: Sort vs. hash revisited,” in Proc. Int. Conf.
Very Large Data Bases, 2013, pp. 85–96.

[99] G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. Cambridge, MA, USA: MIT Press, 1986.

[100] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. ElmoreA, A.
Aboulnaga, A. Pavlo, and M. Stonebraker, “E-store: Fine-grained
elastic partitioning for distributed transaction processing sys-
tems,” Proc. VLDB Endowment, vol. 8, pp. 245–256, 2014.

[101] E. P. C. Jones, D. J. Abadi, and S. Madden, “Low overhead
concurrency control for partitioned main memory databases,”
in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2010, pp. 603–
614.

[102] V. Leis, A. Kemper, and T. Neumann, “Exploiting hardware
transactional memory in main-memory databases,” in
Proc. Int. Conf. Data Eng., 2014, pp. 580–591.

[103] Z. Wang, H. Qian, J. Li, and H. Chen, “Using restricted transac-
tional memory to build a scalable in-memory database,” in Proc.
9th Eur. Conf. Comput. Syst., 2014, pp. 26:1–26:15.

[104] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey, “Palm:
Parallel architecture-friendly latch-free modifications to b+ trees
on many-core processors,” Proc. VLDB Endowment, vol. 4,
pp. 795–806, 2011.

[105] H. Kimura, G. Graefe, and H. Kuno, “Efficient locking techniques
for databases on modern hardware,” in Proc. 3rd Int. Workshop
Accelerating Data Manag. Syst. Using Modern Processor Storage
Archit., 2012, pp. 1–12.

[106] K. Ren, A. Thomson, and D. J. Abadi, “Lightweight locking for
main memory database systems,” Proc. VLDB Endowment, vol. 6,
pp. 145–156, 2013.

[107] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and
M. Zwilling, “High-performance concurrency control mecha-
nisms for main-memory databases,” Proc. VLDB Endowment,
vol. 5, pp. 298–309, 2011.

[108] D. Lomet, A. Fekete, R. Wang, and P. Ward, “Multi-version con-
currency via timestamp range conflict management,” in Proc.
IEEE 28th Int. Conf. Data Eng., 2012, pp. 714–725.

[109] T. Neumann, T. M€uhlbauer, and A. Kemper, “Fast serializable
multi-version concurrency control for main-memory database
systems,” in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2015.

[110] C. Yao, D. Agrawal, P. Chang, G. Chen, B. C. Ooi, W.-F.
Wong, and M. Zhang, “DGCC: A new dependency graph
based concurrency control protocol for multicore database
systems,” ArXiv e-prints, 2015.

[111] A. Pavlo, E. P. C. Jones, and S. Zdonik, “On predictive modeling
for optimizing transaction execution in parallel OLTP systems,”
Proc. VLDB Endowment, vol. 5, pp. 85–96, 2011.

[112] T. Neumann, “Efficiently compiling efficient query plans for
modern hardware,” Proc. VLDB Endowment, vol. 4, pp. 539–550,
2011.

[113] H. Pirk, F. Funke, M. Grund, T. Neumann, U. Leser, S. Manegold,
A. Kemper, and M. Kersten, “CPU and cache efficient manage-
ment of memory-resident databases,” in Proc. IEEE 29th Int.
Conf. Data Eng., 2013, pp. 14–25.

[114] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing main-
memory join on modern hardware,” IEEE Trans. Knowl. Data
Eng., vol. 14, no. 4, pp. 709–730, Jul./Aug. 2002.

[115] M.-C. Albutiu, A. Kemper, and T. Neumann, “Massively parallel
sort-merge joins in main memory multi-core database systems,”
Proc. VLDB Endowment, vol. 5, pp. 1064–1075, 2012.

[116] B. Sowell, M. V. Salles, T. Cao, A. Demers, and J. Gehrke, “An
experimental analysis of iterated spatial joins in main memory,”
Proc. VLDB Endowment, vol. 6, pp. 1882–1893, 2013.

[117] D. Sidlauskas and C. S. Jensen, “Spatial joins in main memory:
Implementation matters!” Proc. VLDB Endowment, vol. 6,
pp. 1882–1893, 2014.

[118] S. D. Viglas, “Write-limited sorts and joins for persistent memo-
ry,” Proc. VLDB Endowment, vol. 7, pp. 413–424, 2014.

[119] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch, “Scalable
and adaptive online joins,” Proc. VLDB Endowment, vol. 7,
pp. 441–452, 2014.

[120] P. Roy, J. Teubner, and R. Gemulla, “Low-latency handshake
join,” Proc. VLDB Endowment, vol. 7, pp. 709–720, 2014.

[121] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri,
N. Chainani, S. Lightstone, and D. Sharpe, “Memory-efficient
hash joins,” Proc. VLDB Endowment, vol. 8, pp. 353–364, 2014.

[122] S. Blanas and J. M. Patel, “Memory footprint matters: Efficient
equi-join algorithms for main memory data processing,” in Proc.
4th Annu. Symp. Cloud Comput., 2013, pp. 19:1–19:16.

[123] O. Polychroniou and K. A. Ross, “A comprehensive study of
main-memory partitioning and its application to large-scale com-
parison- and radix-sort,” in Proc. ACM SIGMOD Int. Conf.
Manag. Data, 2014, pp. 755–766.

[124] B. Chandramouli and J. Goldstein, “Patience is a virtue: Revisit-
ing merge and sort on modern processors,” in Proc. ACM SIG-
MOD Int. Conf. Manag. Data, 2014, pp. 755–766.

[125] A. Cidon, S. M. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum, “Copysets: Reducing the frequency of data loss
in cloud storage,” in Proc. USENIX Conf. Annu. Tech. Conf., 2013,
pp. 37–48.

[126] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M.
Rosenblum, “Fast crash recovery in RAMCloud,” in Proc. 23rd
ACM Symp. Operating Syst. Principles, 2011, pp. 29–41.

[127] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge, “Storage man-
agement in the NVRAM era,” Proc. VLDB Endowment, vol. 7,
pp. 121–132, 2014.

[128] T. Wang and R. Johnson, “Scalable logging through emerging
non-volatile memory,” Proc. VLDB Endowment, vol. 7,
pp. 865–876, 2014.

[129] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang, “High per-
formance database logging using storage class memory,” in Proc.
IEEE 27th Int. Conf. Data Eng., 2011, pp. 1221–1231.

[130] J. Huang, K. Schwan, and M. K. Qureshi, “NVRAM-aware log-
ging in transaction systems,” Proc. VLDB Endowment, vol. 8,
pp. 389–400, 2014.

[131] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker,
“Rethinking main memory OLTP recovery,” in Proc. IEEE 30th
Int. Conf. Data Eng., 2014, pp. 604–615.

[132] C. Yao, D. Agrawal, G. Chen, B. C. Ooi, and S. Wu, “Adaptive
logging for distributed in-memory databases,” ArXiv e-prints,
2015.

[133] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik,
“Anti-caching: A new approach to database management sys-
tem architecture,” Proc. VLDB Endowment, vol. 6, pp. 1942–
1953, 2013.

[134] A. Eldawy, J. J. Levandoski, and P. Larson, “Trekking through
Siberia: Managing cold data in a memory-optimized database,”
in Proc. Int. Conf. Very Large Data Bases, 2014, pp. 931–942.

[135] F. Funke, A. Kemper, and T. Neumann, “Compacting transac-
tional data in hybrid OLTP & OLAP databases,” Proc. VLDB
Endowment, vol. 5, pp. 1424–1435, 2012.

1944 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

[136] R. Stoica and A. Ailamaki, “Enabling efficient os paging for
main-memory oltp databases,” in Proc. 9th Int. Workshop Data
Manag. New Hardware, 2013, pp. 7:1–7:7.

[137] G. Graefe, H. Volos, H. Kimura, H. Kuno, J. Tucek, M. Lillibridge,
andA. Veitch, “In-memory performance for big data,” in Proc. Int.
Conf. Very Large Data Bases, 2014, pp. 37–48.

[138] H. Zhang, G. Chen, W.-F. Wong, B. C. Ooi, S. Wu, and Y. Xia,
“Anti-caching-based elastic data management for big data,” in
Proc. Int. Conf. Data Eng., 2014, pp. 592–603.

[139] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: A work-
load-driven approach to database replication and partitioning,”
Proc. VLDB Endowment, vol. 3, pp. 48–57, 2010.

[140] A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP sys-
tems,” in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2012,
pp. 61–72.

[141] W. R€odiger, T. M€uhlbauer, P. Unterbrunner, A. Reiser, A. Kemper,
and T. Neumann, “Locality-sensitive operators for parallel main-
memory database clusters,” in Proc. Int. Conf. Data Eng., 2014,
pp. 592–603.

[142] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker,
“Staring into the abyss: An evaluation of concurrency control with
one thousand cores,” in Proc. Int. Conf. Very Large Data Bases, 2014.

[143] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein,
and I. Stoica, “Coordination avoidance in database systems,”
Proc. VLDB Endowment, vol. 8, pp. 209–220, 2014.

[144] S. Wolf, H. M€uhe, A. Kemper, and T. Neumann, “An evalua-
tion of strict timestamp ordering concurrency control for
main-memory database systems,” in Proc. IMDM, 2013,
pp. 145–156.

[145] G. Graefe and W. J. McKenna, “The volcano optimizer generator:
Extensibility and efficient search,” in Proc. Int. Conf. Data Eng.,
1993, pp. 209–218.

[146] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: A transaction recovery method supporting fine-granu-
larity locking and partial rollbacks using write-ahead logging,”
ACM Trans. Database Syst., vol. 17, pp. 94–162, 1992.

[147] H. M€uhe, A. Kemper, and T. Neumann, “How to efficiently
snapshot transactional data: Hardware or software controlled?”
in Proc. 7th Int. Workshop Data Manag. New Hardware, 2011,
pp. 17–26.

[148] Oracle, “Analysis of sap hana high availability capabilities,”
Oracle, Redwood City, CA, USA, Tech. Rep. 1959003, 2014,
http://www.oracle.com/technetwork/database/availability/
sap-hana-ha-analysis-cwp-1959003.pdf

[149] T. M€uhlbauer, W. R€odiger, A. Reiser, A. Kemper, and
T. Neumann, “ScyPer: Elastic OLAP throughput on transac-
tional data,” in Proc. 2nd Workshop Data Analytics Cloud, 2013,
pp. 11–15.

[150] M. Stonebraker and A. Weisberg, “The voltDB main memory
DBMs,” IEEE Data Eng. Bull., vol. 36, no. 2, Jun. 2013.

[151] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” in Proc. 1st USENIX Conf. File Storage
Technol., 2002, pp. 231–244.

[152] G. A. Gibson and R. Van Meter, “Network attached storage
architecture,” Commun. ACM, vol. 43, pp. 37–45, 2000.

[153] B. H€oppner, A. Waizy, and H. Rauhe, “An approach for hybrid-
memory scaling columnar in-memory databases,” in Proc. Int.
Workshop Accelerating Data Mana. Syst. Using Modern Processor
Storage Archit., 2014, pp. 64–73.

[154] I. Oukid, D. Booss, W. Lehner, P. Bumbulis, and T. Willhalm,
“SOFORT: A hybrid SCM-DRAM storage engine for fast data
recovery,” in Proc. 10th Int. Workshop Data Manag. New Hardware,
2014, pp. 8:1–8:7.

[155] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-
formance main memory system using phase-change memory
technology,” in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009,
pp. 24–33.

[156] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM
and DRAM main memory system,” in Proc. 46th Annu. Des.
Autom. Conf., 2009, pp. 664–669.

[157] M. Boissier, “Optimizing main memory utilization of columnar
in-memory databases using data eviction,” in Proc. VLDB Ph.D.
Workshop, 2014, pp. 1–6.

[158] J. Dean, “Designs, lessons and advice from building large distrib-
uted systems,” in Proc. 3rd ACM SIGOPS Int. Workshop Large Scale
Distrib. Syst. Middleware, 2009.

[159] A. M. Caulfield, J. Coburn, T. Mollov, A. De, A. Akel, J. He,
A. Jagatheesan, “Understanding the impact of emerging
non-volatile memories on high-performance, io-intensive
computing,” in Proc. ACM/IEEE Int. Conf. High Perform. Com-
put., Netw., Storage Anal., 2010, pp. 1–11.

[160] T. Jain and T. Agrawal, “The Haswell microarchitecture - 4th
generation processor,” Int. J.f Comput. Sci. Inf. Technol., vol. 4,
pp. 477–480, 2013.

[161] Samsung, “Samsung solid state drive white paper,” Samsung,
Seoul, South Korea, Tech. Rep., 2013.

[162] PassMark. (2014). Passmark - memory latency [Online]. Avail-
able: http://www.memorybenchmark.net/latency_ddr3_intel.
html

[163] Seagate. (2014). Seagate hard disk [Online]. Available: http://
www.seagate.com

[164] Western Digital. (2014). Western digital hard drive [Online].
Available: http://www.wdc.com/

[165] Intel, Intel 64 and IA-32 architectures optimization reference
manual, Intel, Santa Clara, CA, USA, 2014.

[166] 7-CPU. (2014). Intel Haswell [Online]. Available: http://www.7-
cpu.com/cpu/Haswell.html

[167] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proc. Int. Symp.
Code Generation Optimization: Feedback-Directed Runtime Optimiza-
tion, 2004, p. 75.

[168] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani, D. Kossmann, I.
Narang, and R. Sidle, “Constant-time query processing,” in Proc.
IEEE 24th Int. Conf. Data Eng., 2008, pp. 60–69.

[169] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M. Levy,
and S. S. Parekh, “An analysis of database workload perfor-
mance on simultaneous multithreaded processors,” in Proc. 25th
Annu. Int. Symp. Comput. Archit., 1998, pp. 39–50.

[170] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E.
Baker, “Performance characterization of a Quad Pentium Pro
SMP using OLTP workloads,” in Proc. 25th Annu. Int. Symp. Com-
put. Archit., 1998, pp. 15–26.

[171] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs
on a modern processor: Where does time go?” in Proc. Int. Conf.
Very Large Data Bases, 1999, pp. 266–277.

[172] H. Zhang, B. M. Tudor, G. Chen, and B. C. Ooi, “Efficient in-
memory data management: An analysis,” in Proc. Int. Conf. Very
Large Data Bases, 2014, pp. 833–836.

[173] G. P. Copeland and S. N. Khoshafian, “A decomposition storage
model,” in Proc. ACM SIGMOD Int. Conf. Manag. Data, 1985,
pp. 268–279.

[174] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing data-
base architecture for the new bottleneck: Memory access,” VLDB
J., vol. 9, pp. 231–246, 2000.

[175] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
database systems,” in Proc. Int. Conf. Very Large Data Bases, 2009,
pp. 1664–1665.

[176] M. Grund, J. Kr€uger, H. Plattner, A. Zeier, P. Cudre-Mauroux,
and S. Madden, “HYRISE: A main memory hybrid storage
engine,” Proc. VLDB Endowment, vol. 4, pp. 105–116, 2010.

[177] J. Goldstein, R. Ramakrishnan, and U. Shaft, “Compressing rela-
tions and indexes,” in Proc. Int. Conf. Data Eng., 1998, pp. 370–
379.

[178] T. M. Chilimbi, M. D. Hill, and J. R. Larus, “Making pointer-
based data structures cache conscious,” Comput., vol. 33, no. 12,
pp. 67–74, Dec. 2000.

[179] R. Sinha and J. Zobel, “Cache-conscious sorting of large sets of
strings with dynamic tries,” J. Experimental Algorithmics, vol. 9,
pp. 1–31, 2004.

[180] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning
of word-based software transactional memory,” in Proc. 13th
ACM SIGPLAN Symp. Principles Practice Parallel Program., 2008,
pp. 237–246.

[181] R. Hickey, “The clojure programming language,” in Proc. Symp.
Dyn. Languages, 2008, p. 1.

[182] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy,
“Composable memory transactions,” in Proc. 10th ACM
SIGPLAN Symp. Principles Practice Parallel Program., 2005,
pp. 48–60.

[183] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance
evaluation of Intel transactional synchronization extensions for
high-performance computing,” in Proc. Int. Conf. High Perform.
Comput. Netw., Storage Anal., 2013, pp. 19:1–19:11.

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1945

[184] AMD, “Advanced synchronization facility proposed architec-
tural specification,” AMD, Sunnyvale, CA, USA, Tech. Rep.
45432, 2009, http://developer.amd.com/wordpress/media/
2013/09/45432-ASF_Spec_2.1.pdf

[185] D. B. Gustavson, “Scalable coherent interface,” in Proc. COMP-
CON Spring, 1989, pp. 536–538.

[186] H. Boral, W. Alexander, L. Clay, G. P. Copeland, S. Danforth, M.
J. Franklin, B. E. Hart, M. G. Smith, and P. Valduriez,
“Prototyping bubba, a highly parallel database system,” IEEE
Trans. Knowl. Data Eng., vol. 2, no. 1, pp. 4–24, Mar. 1990.

[187] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker,
H.-I. Hsiao, and R. Rasmussen, “The gamma database machine
project,” IEEE Trans. Knowl. Data Eng., vol. 2, no. 1, pp. 44–62,
Mar. 1990.

[188] L. M. Maas, T. Kissinger, D. Habich, and W. Lehner,
“BUZZARD: A NUMA-aware in-memory indexing system,”
in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2013,
pp. 1285–1286.

[189] V. Leis, P. Boncz, A. Kemper, and T. Neumann, “Morsel-driven
parallelism: A NUMA-aware query evaluation framework for
the many-core age,” in Proc. ACM SIGMOD Int. Conf. Manag.
Data, 2014, pp. 743–754.

[190] D. Porobic, I. Pandis, M. Branco, P. T€oz€un, and A. Ailamaki,
“OLTP on hardware islands,” Proc. VLDB Endowment, vol. 5,
no. 11, pp. 1447–1458, Jul. 2012.

[191] D. Porobic, E. Liarou, P. T€oz€un, and A. Ailamaki, “ATraPos:
Adaptive transaction processing on hardware islands,” in Proc.
IEEE 30th Int. Conf. Data Eng., 2014, pp. 688–699.

[192] Y. Li, I. Pandis, R. M€uller, V. Raman, and G. M. Lohman, “Numa-
aware algorithms: the case of data shuffling,” in Proc. CIDR,
2013.

[193] D. J. DeWitt and J. Gray, “Parallel database systems: The future
of high performance database systems,” Commun. ACM, vol. 35,
pp. 85–98, 1992.

[194] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chi-
ras, and S. Chatterjee, “Software transactional memory: Why is it
only a research toy?” Queue, vol. 6, p. 40, 2008.

[195] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach. Amsterdam, The Netherlands: Elsevier,
2012.

[196] S. Wasson, “Errata prompts intel to disable tsx in haswell, early
broadwell cpus,” The Tech Report, Aug. 2014.

[197] C. W. Wong, “Intel launches Xeon E7 v3 CPUs, optimized for
real-time data analytics and mission-critical computing,” Singa-
pore Hardware Zone, May 2015.

[198] T. Kgil, D. Roberts, and T. Mudge, “Improving NAND flash
based disk caches,” in Proc. 35th Annu. Int. Symp. Comput. Archit.,
2008, pp. 327–338.

[199] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K.
Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A.
Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change
memory technology,” J. Vacuum Sci., vol. 28, no. 2, pp. 223–262,
2010.

[200] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D.
Lottis, K. Moon, X. Luo, E. Chen, A. Ong, A. Driskill-Smith, and
M. Krounbi, “Spin-transfer torque magnetic random access
memory (STT-MRAM),” J. Emerging Technol. Comput. Syst.,
vol. 9, pp. 13:1–13:35, 2013.

[201] J. J. Yang and R. S. Williams, “Memristive devices in computing
system: Promises and challenges,” J. Emerging Technol. Comput.
Syst., vol. 9, 2013.

[202] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalak-
rishnan, and R. S. Shenoy, “Overview of candidate device tech-
nologies for storage-class memory,” IBM J. Res. Develop., vol. 52,
no. 4/5, pp. 449–464, Jul. 2008.

[203] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and
C. R. Das, “Cache revive: Architecting volatile STT-RAM caches
for enhanced performance in CMPs,” in Proc. 49th ACM/EDAC/
IEEE Des. Autom. Conf., 2012, pp. 243–252.

[204] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking database
algorithms for phase change memory,” in Proc. CIDR, 2011,
pp. 21–31.

[205] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger,
and D. Coetzee, “Better I/O through byte-addressable, persistent
memory,” in Proc. ACM SIGOPS 22nd Symp. Operating Syst.
Principles, 2009, pp. 133–146.

[206] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory tech-
nology,” in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009,
pp. 14–23.

[207] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in Proc. 36th
Annu. Int. Symp. Comput. Archit., 2009, pp. 2–3.

[208] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi, “Operating
system support for NVM+DRAM hybrid main memory,” in
Proc. 12th Conf. Hot Topics Operating Syst., 2009, p. 14.

[209] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, “Operating sys-
tem implications of fast, cheap, non-volatile memory,” in Proc.
13th USENIX Conf. Hot Topics Operating Syst., 2011, p. 2.

[210] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L.
Lastras, and B. Abali, “Enhancing lifetime and security of PCM-
based main memory with start-gap wear leveling,” in Proc. 42nd
Annu. IEEE/ACM Int. Symp. Microarchit., 2009, pp. 14–23.

[211] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu, “A
low power phase-change random access memory using a data-
comparison write scheme,” in Proc. IEEE Int. Symp. Circuits Syst.,
2007, pp. 3014–3017.

[212] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main
memory,” Proc. VLDB Endowment, vol. 8, pp. 786–797, 2015.

[213] A. Chatzistergiou, M. Cintra, and S. D. Viglas, “REWIND: Recov-
ery write-ahead system for in-memory non-volatitle data-
structures,” Proc. VLDB Endowment, vol. 8, pp. 497–508, 2015.

[214] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R.
Jhala, and S. Swanson, “NV-Heaps: Making persistent objects
fast and safe with next-generation, non-volatile memories,” in
Proc. 16th Int. Conf. Archit. Support Program. Languages Operating
Syst., 2011, pp. 105–118.

[215] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in Proc. 16th Int. Conf. Archit. Support Pro-
gram. Languages Operating Syst., 2011, pp. 91–104.

[216] I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, P. Rangana-
than, and N. Binkert, “Consistent, durable, and safe memory
management for byte-addressable non volatile main memory,”
presented at the Conf. Timely Results Operating Syst. Held in
Conjunction with SOSP, Farmington, PA, USA, 2013.

[217] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-
addressable memory,” in Proc. 9th USENIX Conf. File Storage
Technol., 2011, p. 5.

[218] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R.
Sankaran, and J. Jackson, “System software for persistentmemory,”
in Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 15:1–15:15.

[219] J. Jung, Y. Won, E. Kim, H. Shin, and B. Jeon, “FRASH: Exploit-
ing storage class memory in hybrid file system for hierarchical
storage,” ACM Trans. Storage, vol. 6, pp. 3:1–3:25, 2010.

[220] A.-I. A. Wang, G. Kuenning, P. Reiher, and G. Popek, “The con-
quest file system: Better performance through a disk/persistent-
ram hybrid design,” ACM Trans. Storage, vol. 2, pp. 309–348,
2006.

[221] X. Wu and A. L. N. Reddy, “SCMFS: A file system for storage
class memory,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., 2011, pp. 39:1–39:11.

[222] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker,
“OLTP through the looking glass, and what we found there,” in
Proc. ACM SIGMOD Int. Conf. Manag. Data, 2008, pp. 981–992.

[223] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V.
KulandaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman,
T. Malkemus, R. Mueller, I. Pandis, B. Schiefer, D. Sharpe, R.
Sidle, A. Storm, and L. Zhang, “DB2 with BLU acceleration: So
much more than just a column store,” Proc. VLDB Endowment,
vol. 6, pp. 1080–1091, 2013.

[224] R. Barber, G. Lohman, V. Raman, R. Sidle, S. Lightstone, and B.
Schiefer, “In-memory blu acceleration in IBMs db2 and dashdb:
Optimized for modern workloads and hardware architectures,”
in Proc. Int. Conf. Data Eng., 2015, pp. 1246–1252.

[225] McObject, “extremedb database system,” 2001. [Online]. Avail-
able: http://www.mcobject.com/extremedbfamily.shtml

[226] Pivotal. (2013). Pivotal SQLFire [Online]. Available: http://
www.vmware.com/products/vfabric-sqlfire/overview.html

[227] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and D.
Kossmann, “Predictable performance for unpredictable work-
loads,” Proc. VLDB Endowment, vol. 2, pp. 706–717, 2009.

1946 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

[228] Oracle. (2004). MySQL cluster NDB [Online]. Available: http://
www.mysql.com/

[229] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N.
Hachem, and P. Helland, “The end of an architectural era: (it’s
time for a complete rewrite),” in Proc. Int. Conf. Very Large Data
Bases, 2007, pp. 1150–1160.

[230] J. Levandoski, D. Lomet, S. Sengupta, A. Birka, and C. Diaconu,
“Indexing on modern hardware: Hekaton and beyond,” in Proc.
ACM SIGMOD Int. Conf. Manag. Data, 2014., pp. 717–720.

[231] J. Levandoski, D. Lomet, and S. Sengupta, “LLAMA: A cache/
storage subsystem for modern hardware,” Proc. VLDB Endow-
ment, vol. 6, pp. 877–888, 2013.

[232] R. Stoica, J. J. Levandoski, and P.-A. Larson, “Identifying hot and
cold data in main-memory databases,” in Proc. IEEE Int. Conf.
Data Eng., 2013, pp. 26–37.

[233] K. Alexiou, D. Kossmann, and P.-A. Larson, “Adaptive range fil-
ters for cold data: Avoiding trips to Siberia,” Proc. VLDB Endow-
ment, vol. 6, pp. 1714–1725, 2013.

[234] H. T. Kung and P. L. Lehman, “Concurrent manipulation of
binary search trees,” ACM Trans. Database Syst., vol. 5,
pp. 354–382, 1980.

[235] L. Sidirourgos and P.-A. Larson, “Splitting bloom filters for effi-
cient access to cold data,” Available from Authors, 2014.

[236] A. Kemper and T. Neumann, “One size fits all, again! the archi-
tecture of the hybrid oltp&olap database management system
hyper,” in Proc. 4th Int. Workshop Enabling Real-Time Bus. Intell.,
2010, pp. 7–23.

[237] A. Kemper, T. Neumann, F. Funke, V. Leis, and H. Muhe,
“Hyper: Adapting columnar main-memory data management
for transactional and query processing,” IEEE Data Eng. Bull.,
vol. 35, no. 1, pp. 46–51, Mar. 2012.

[238] H. M€uhe, A. Kemper, and T. Neumann, “Executing long-running
transactions in synchronization-free main memory database sys-
tems,” in Proc. CIDR, 2013.

[239] SAP. (2010). SAP HANA [Online]. Available: http://www.
saphana.com/

[240] F. Frber, N. May, W. Lehner, P. Große, I. Mller, H. Rauhe, and J.
Dees, “The SAP HANA database – an architecture overview,”
IEEE Data Eng. Bull., vol. 35, no. 1, pp. 28–33, Mar. 2012.

[241] M. Rudolf, M. Paradies, C. Bornhvd, and W. Lehner, “The graph
story of the SAP HANA database,” in Proc. BTW, 2013,
pp. 403–420.

[242] M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer, D. Koss-
mann, F. F€arber, and N. May, “Timeline index: A unified data
structure for processing queries on temporal data in sap hana,” in
Proc. ACMSIGMOD Int. Conf.Manag. Data, 2013, pp. 1173–1184.

[243] J. Lee, Y. S. Kwon, F. Farber, M. Muehle, C. Lee, C. Bensberg, J. Y.
Lee, A. H. Lee, and W. Lehner, “SAP HANA distributed in-
memory database system: Transaction, session, and metadata
management,” in Proc. IEEE 29h Int. Conf. Data Eng., 2013,
pp. 1165–1173.

[244] P. R€osch, L. Dannecker, F. F€arber, and G. Hackenbroich, “A stor-
age advisor for hybrid-store databases,” Proc. VLDB Endowment,
vol. 5, pp. 1748–1758, 2012.

[245] P. Große, W. Lehner, T. Weichert, F. F€arber, and W.-S. Li,
“Bridging two worlds with rice integrating r into the sap in-
memory computing engine,” Proc. VLDB Endowment, vol. 4,
pp. 1307–1317, 2011.

[246] S. Urbanek, “Rserve – a fast way to provide R functionality to
applications,” in Proc. 3rd Int. Workshop Distrib. Statist. Comput.,
2003, pp. 1–11.

[247] M. Kaufmann, P. Vagenas, P. M. Fischer, D. Kossmann, and F.
F€arber, “Comprehensive and interactive temporal query process-
ing with SAP HANA,” Proc. VLDB Endowment, vol. 6, pp. 1210–
1213, 2013.

[248] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans.
Compu. Syst., vol. 26, pp. 4:1–4:26, 2008.

[249] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast
multicore key-value storage,” in Proc. 7th ACM Eur. Conf. Com-
put. Syst., 2012, pp. 183–196.

[250] R. Gandhi, A. Gupta, A. Povzner, W. Belluomini, and T. Kalde-
wey, “Mercury: Bringing efficiency to key-value stores,” in Proc.
6th Int. Syst. Storage Conf., 2013, pp. 6:1–6:6.

[251] FAL Labs. (2009). Kyoto cabinet: A straightforward implementa-
tion of DBM Available: http://fallabs.com/kyotocabinet/

[252] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads to
build a fast, CPU-efficient key-value store,” in Proc. USENIX
Conf. Annu. Tech. Conf., 2013, pp. 103–114.

[253] M. C. Brown, Getting Started with Couchbase Server. Sebastopol,
CA, USA: O’Reilly Media, 2012.

[254] S. Ramachandran. (2013). Bitsy graph database [Online]. Avail-
able: https://bitbucket.org/lambdazen/bitsy

[255] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, and
R. Velkov, “OWLIM: A family of scalable semantic repositories,”
Semantic Web, vol. 2, pp. 33–42, 2011.

[256] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-
pipelining query execution,” in Proc. CIDR, 2005, pp. 225–237.

[257] H. Chu, “MDB: A memory-mapped database and backend for
openldap,” in Proc. LDAPCon, 2011.

[258] S. M. Rumble, “Memory and object management in ramcloud,”
Ph.D. dissertation, The Department of Computer Science, Stan-
fordUniversity, Stanford, CA, USA, 2014.

[259] R. S. Stutsman, “Durability and crash recovery in distributed in-
memory storage systems,” Ph.D. dissertation, The Department
of Computer Science, Stanford University, Stanford, CA, USA,
2013.

[260] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular
ACTOR formalism for artificial intelligence,” in Proc. 3rd Int. Joint
Conf. Artif. Intell., 1973, pp. 235–245.

[261] Y. Collet. (2013). Lz4: Extremely fast compression algorithm
[Online]. Available: https://code.google.com/p/lz4/

[262] J. Evans, “A scalable concurrent malloc (3) implementation for
freebsd,” presented at the BSDCan Conf., Ottawa, ON, Canada,
2006.

[263] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang, “A distributed
graph engine for web scale RDF data,” Proc. VLDB Endowment,
vol. 6, pp. 265–276, 2013.

[264] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S.
Kandula, S. Shenker, and I. Stoica, “PACMan: Coordinated mem-
ory caching for parallel jobs,” in Proc. 9th USENIX Conf. Netw.
Syst. Des. Implementation, 2012, p. 20.

[265] Alachisoft. (2005). Ncache: In-memory distributed cache for .net
[Online]. Available: http://www.alachisoft.com/ncache/

[266] N. Sampathkumar, M. Krishnaprasad, and A. Nori,
“Introduction to caching with windows server AppFabric,”
Microsoft Corporation, Albuquerque, NM, USA, Tech. Rep.,
2009.

[267] D. R. K. Ports, A. T. Clements, I. Zhang, S. Madden, and B. Liskov,
“Transactional consistency and automatic management in an
application data cache,” in Proc. 9th USENIXConf. Netw. Syst. Des.
Implementation, 2010, pp. 1–15.

[268] A. Badam, K. Park, V. S. Pai, and L. L. Peterson, “HashCache:
Cache storage for the next billion,” in Proc. 6th USENIX Symp.
Netw. Syst. Des. Implementation, 2009, pp. 123–136.

[269] H. Yu, L. Breslau, and S. Shenker, “A scalable web cache consis-
tency architecture,” in Proc. ACM SIGCOMM, 1999, pp. 163–174.

[270] J. Challenger, A. Iyengar, and P. Dantzig, “A scalable system for
consistently caching dynamic web data,” in Proc. IEEE INFO-
COM, 1999, pp. 294–303.

[271] H. Zhu and T. Yang, “Class-based cache management for
dynamic web content,” in Proc. IEEE INFOCOM, 2001,
pp. 1215–1224.

[272] M. Surtani. (2005). Jboss cache [Online]. Available: http://www.
jboss.org/jbosscache/

[273] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T.
Tung, and V. Venkataramani, “Scaling memcache at facebook,”
in Proc. 10th USENIX Conf. Netw. Syst. Des. Implementation, 2013,
pp. 385–398.

[274] M. Rajashekhar and Y. Yue. (2012). Twemcache: Twitter memc-
ached [Online]. Available: https://github.com/twitter/
twemcache

[275] N. Gunther, S. Subramanyam, and S. Parvu, “Hidden scalability
gotchas in memcached and friends,” Oracle, Redwood City, CA,
USA, Tech. Rep., 2010.

[276] C. G. Gray and D. R. Cheriton, “Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency,” in Proc. 12th
ACM Symp. Operating Syst. Principles, 1989, pp. 202–210.

[277] K. Keeton, C. B. Morrey III, C. A. Soules, and A. C. Veitch,
“Lazybase: Freshness vs. performance in information man-
agement,” ACM SIGOPS Operating Syst. Rev., vol. 44, pp. 15–19,
2010.

ZHANG ET AL.: IN-MEMORY BIG DATA MANAGEMENT AND PROCESSING: A SURVEY 1947

[278] R. Pagh and F. Rodler, “Cuckoo hashing,” in Algorithms – ESA
2001, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2001, vol. 2161, pp. 121–133.

[279] F. J. Corbat�o, A Paging Experiment With the Multics System.
Defense Technical Information Center, Fort Belvoir, VA, USA,
1968.

[280] SINGA TEAM, (2014). Singa: A distributed training platform for
deep learning models [Online]. Available: http://www.comp.
nus.edu.sg/�dbsystem/singa/

[281] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N.
Leiser, and G. Czajkowski, “Pregel: A system for large-scale
graph processing,” in Proc. ACM SIGMOD Int. Conf. Manag.
Data, 2010, pp. 135–146.

[282] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears, “MapReduce online,” in Proc. 7th USENIX Conf.
Netw. Syst. Des. Implementation, 2010, p. 21.

[283] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. 6th Conf. Symp. Operating Syst. Des.
Implementation, 2004, p. 10.

[284] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.
Stoica, “Spark: Cluster computing with working sets,” in Proc.
2nd USENIX Conf. Hot Topics Cloud Comput., 2010, p. 10.

[285] J. Cheney, L. Chiticariu, and W. C. Tan, “Provenance in data-
bases: Why, how, and where,” Found. Trends Databases, vol. 1,
pp. 379–474, 2009.

[286] R. Bose and J. Frew, “Lineage retrieval for scientific data process-
ing: A survey,” ACM Comput. Surv., vol. 37, pp. 1–28, 2005.

[287] H. Li, A. Ghodsi, M. Zaharia, E. Baldeschwieler, S. Shenker, and
I. Stoica, “Tachyon: Memory throughput i/o for cluster comput-
ing frameworks,” in Proc. LADIS, 2013.

[288] S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh, “Improving
main memory hash joins on intel xeon phi processors: An experi-
mental approach,” Proc. VLDB Endowment, vol. 8, pp. 642–653,
2015.

[289] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramo-
nian, A. Davis, and N. P. Jouppi, “Rethinking DRAM design and
organization for energy-constrained multi-cores,” in Proc. 7th
Annu. Int. Symp. Comput. Archit., 2010, pp. 175–186.

[290] T. Vogelsang, “Understanding the energy consumption of
dynamic random access memories,” in Proc. 43rd Annu. IEEE/
ACM Int. Symp. Microarchit., 2010, pp. 363–374.

Hao Zhang received the BSc degree in computer
science from the Harbin Institute of Technology,
in 2012. He is currently working toward the PhD
degree in computer science at the School of
Computing, National University of Singapore
(NUS). His research interests include in-memory
database systems, distributed systems, and
database performance.

Gang Chen received the BSc, MSc, and PhD
degrees in computer science and engineering
from Zhejiang University in 1993, 1995, and
1998, respectively. He is currently a professor at
the College of Computer Science, Zhejiang Uni-
versity. His research interests include databases,
information retrieval, information security and
computer supported cooperative work. He is also
the executive director of Zhejiang University—
Netease Joint Lab on Internet Technology. He is
a member of the IEEE.

Beng Chin Ooi received the BSc (First-class Hon-
ors) and the PhD degrees fromMonash University,
Australia, in 1985 and 1989, respectively. He is cur-
rently a distinguished professor of computer sci-
ence at the National University of Singapore
(NUS). His research interests include database
system architectures, performance issues, index-
ing techniques and query processing, in the context
of multimedia, spatiotemporal, distributed, parallel,
peer-to-peer, in-memory, and cloud database sys-
tems. He is a fellow of the IEEE.

Kian-Lee Tan received the BSc (First-class Hon-
ors), MSc, and PhD degrees in computer sci-
ence, from the National University of Singapore,
in 1989, 1991, and 1994, respectively. He is cur-
rently a Shaw professor of computer science at
the School of Computing, National University of
Singapore (NUS). His research interests include
multimedia information retrieval, query process-
ing and optimization in multiprocessor and dis-
tributed systems, database performance, and
database security. He is a member of the IEEE.

Meihui Zhang received the BSc and PhD
degrees in computer science, from the Harbin
Institute of Technology in 2008, and National
University of Singapore in 2013, respectively.
She is currently an assistant professor of Infor-
mation Systems Technology and Design (ISTD),
Singapore University of Technology and Design
(SUTD). Her research interests include database
issues, particularly data management, massive
data integration, and analytics. She also works
on crowdsourcing and spatiotemporal databases.

She is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1948 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

